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Abstract

We propose a bias correction method for nonlinear models with both individual and

time effects. Under the presence of the incidental parameter problem, the maximum

likelihood estimator derived from such models may be severely biased. Our method

produces an approximation to an infeasible log-likelihood function that is not exposed

to the incidental parameter problem. The maximizer derived from the approximating

function serves as a bias-corrected estimator that is asymptotically unbiased when the

sequence N/T converges to a constant. The proposed method is general in several

perspectives. The method can be extended to models with multiple fixed effects and

can be easily modified to accommodate dynamic models.

Keywords: Incidental parameter problem, maximum likelihood, asymptotic bias

correction.

1 Introduction

In many panel applications, researchers would like to incorporate heterogeneities that

are individual- and time-dependent. When such heterogeneities are correlated with the

covariates of the model, a fixed-effect model including both individual and time effects is

usually needed. However, certain class of nonlinear fixed-effect models would produce a

severely biased estimate of the parameter that is associated with the covariate (also known

as the common parameter). This is the incidental parameter problem (IPP) of Neyman

and Scott (1948). For models with only individual effects, Lancaster (2000) and Arellano

and Hahn (2005) provide extensive reviews. To briefly introduce the problem, consider the

density (conditional on covariates) f (Yit; θ, ai) where Yit is a scalar outcome of the i, tth

observation with i = 1, · · · , N indexing the individuals and t = 1, · · · , T indexing the time

periods, ai is the individual-effect parameter, and θ is the common parameter. UnderN → ∞
with T fixed, the maximum likelihood (ML) estimator of ai, α̂i, remains to be a random

variable. The log-likelihood adopts this randomness in the sense that θ̂, the ML estimator

of θ, converges to an incorrect probability limit that is different from θ0, the true value of

θ. When T increases with N , the random variation in α̂i vanishes only slowly. In that case,

the asymptotic distribution of θ̂− θ0 contains a bias depending on the relative rate at which

N,T → ∞ (Hahn and Newey, 2004). There is a substantial body of literature addressing the
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IPP when only individual effects are present. For example, Cox and Reid (1987), Lancaster

(2002), and Moreira (2008) consider certain reparameterizations producing a ML estimator

of θ that is invariant to the individual effects; Fernández-Val (2009) considers the estimation

for the fixed-effect probit model, while Greene (2004) considers the Tobit model; Hahn and

Newey (2004) and Dhaene and Jochmans (2015) propose bias correction methods based on

the jackknife; while Arellano and Hahn (2006) and Arellano and Bonhomme (2009) introduce

correction techniques in which a bias-corrected estimate is obtained by maximizing a modified

objective function. Other related works include, e.g., Honoré (1993), Hsiao et al. (2002),

Alvarez and Arellano (2003), and Hahn and Kuersteiner (2011).

When the model contains both individual and time effects, the situation is much more

severe. Consider the density f (Yit; θ, ai, ct) where ct is the additional time-effect parame-

ter. When N increases with T fixed (or vise-verse), no consistent estimator of θ may be

constructed in general. When N and T grow at the same rate, the variations in α̂i and

γ̂t induce a bias in θ̂, which is of the same order as the variance such that the asymptotic

distribution of θ̂ − θ0 is not centered at 0. In many cases, this bias is nonnegligible to

the point that a bias correction technique must be considered. The literature related to

this type of model is relatively sparse. For example, Charbonneau (2014) considers binary

response models with multiple fixed effects; Okui (2010) studies the estimation of the au-

tocovariance and the autocorrelation; Bai (2009) and Chen et al. (2014) study fixed-effect

models in which the individual and time effects enter interactively. For models with both

effects, certain correction techniques that apply to the single-effect model (a model with

individual effects only) may be generalized to accommodate the two sets of effects. For

instance, the recent work of Fernández-Val and Weidner (2016) introduces a split-panel

jackknife, similar to Dhaene and Jochmans (2015), that incorporates both individual and

time effects. In addition, they also derive a technique that can be used to construct a

bias-corrected estimate of θ. Their correction technique is implemented on the parameter

level similar to Hahn and Newey (2004), i.e., they provide formulas for b and d such that

θ̂ − θ0 = b/T + d/N + op
(
T−1

)
+ op

(
N−1

)
. Alternative to this, the contribution of our

paper to the literature is that we extend the method proposed by Arellano and Hahn (2006)

to accommodate models with both individual and time effect (two-effect models). Arellano

and Hahn (2006) introduce an approximating log-likelihood function, accurate to the order

of op
(
T−1

)
(in the single-effect case), to an infeasible log-likelihood that is immune to the

IPP. When the approximating function is maximized, the resulting maximizer constitutes

a bias-corrected estimate that is unbiased to the order of Op

(
T−1

)
. We generalize their

approach to derive an approximating log-likelihood function that is accurate to the order of,

in the context of a two-effect model, op
(
T−1

)
+ op

(
N−1

)
. Our approach is slightly simpler

than Fernández-Val and Weidner (2016) in the sense that we do not require the calculation

of the third derivative of the log-likelihood. Our approach is general in the sense that we do

not require the fixed-effect parameters to be additive. We focus only on cases where Yit is

independent across i and t. We do, however, briefly discuss how dynamic models and models

with multiple fixed effects can be treated within the context of our approach.

The rest of the paper is organized into the following sections. Section 2 presents a

detailed introduction of the IPP in the context of a two-effect model. In this section, we

show that the log-likelihood function possesses an asymptotic bias. Section 3 derives the
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bias-corrected log-likelihood function for static models containing both individual and time

effect. We provide a preliminary discussions on dynamic models in this section. Also in this

section, we present the corrected log-likelihood function for models with a general number

of fixed effects and explicitly derive the corrected log-likelihood function for models with 3

sets of fixed effects. Section 4 contains several examples of the application of the corrected

log-likelihood. We impose the correction on two modified versions of the variance model of

Neyman and Scott (1948) that include, respectively, 2 and 3 sets of fixed effects. Additionally,

we present suggestive simulation studies on the static logit and the static probit model.

2 Incidental Parameter Problem with Both Individual and

Time Effects

We consider a dataset containing a scalar outcome Yit (conditional on certain covariates)

where i = 1, · · · , N and t = 1, · · · , T for some positive integer N and T . We focus on

cases that are static, i.e., Yit is assumed to be independent across i and t. In addition,

Yit is assumed to be governed by a distribution with a smooth density f (Yit; θ, ai, ct) that

is known up to values for θ, ai, and ct, where ai is a scalar individual-effect parameter that

depends only on the ith individual, ct is a scalar time-effect parameter that depends only on

the tth time period, and θ is a vector of parameters of interest that is the same for all i, t.

Our specification is similar to the recent paper by Fernández-Val and Weidner (2016) except

that we focus only on independent data. We will, however, discuss the way to incorporate

dynamic data in section 3.2. In addition, we will discuss the accommodation of models with

more than two sets of fixed effects in section 3.3.

In the context of ML and for an arbitrarily given θ, estimators for ai and ct can be

constructed as

α̂1 (θ) , · · · , α̂N (θ) , γ̂1 (θ) , · · · , γ̂T (θ) ≡ arg max
a1,··· ,aN ,c1,··· ,cT

1

NT

∑
it

log f (Yit; θ, ai, ct) .

Note that α̂i (θ) and γ̂t (θ) are assumed to be unique and finite, and to be interior to their

corresponding parameter space, which is compact. Subsequently, θ̂, the ML estimator for θ,

can be obtained as

θ̂ ≡ argmax
θ

1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ)) .

For many models such as probit and logit, when N → ∞ with T fixed, θ̂ is inconsistent, i.e.,

assuming the expectation exists,

plim
N→∞

θ̂ = θT ≡ argmax
θ

plim
N→∞

1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ))

̸= θ0 ≡ argmax
θ

1

NT

∑
it

E log f (Yit; θ, αi (θ) , γt (θ))
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where

α1 (θ) , · · · , αN (θ) , γ1 (θ) , · · · , γT (θ) ≡ arg max
a1,··· ,aN ,c1,··· ,cT

1

NT

∑
it

E log f (Yit; θ, ai, ct)

and E (·) denotes the expectation computed under the true density f (·; θ0, αi (θ0) , γt (θ0)).

When N is fixed and T → ∞, a similar result holds for θ̂. In both cases, no consistent

estimator of θ could be constructed in general. On the other hand, when N/T → κ as

N,T −→ ∞ where 0 < κ < ∞, θ̂ is generally consistent, i.e.,

θ̂
p→ θ0.

However, the asymptotic distribution of
√
NT

(
θ̂ − θ0

)
contains a bias in the sense that the

distribution is not centered at 0. The presence of this is due to the fact that

1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ))

consists of an asymptotic bias away from the infeasible log-likelihood

1

NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ)) .

To see this, write ∇ai log f (·) and ∇ct log f (·) for the first derivatives, evaluated at

αi (θ) and γt (θ), of log f (Yit; θ, ai, ct) w.r.t. ai and ct respectively. Consider an expansion

of 1/
√
NT

∑
it log f (Yit; θ, α̂i (θ) , γ̂t (θ)),

1√
NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ))

≈ 1√
NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ))

+
1

N

∑
i

[(
1

T

∑
t

∇ai log f (Yit; θ, αi (θ) , γt (θ))

)
√
NT (α̂i (θ)− αi (θ))

]

+
1

T

∑
t

[(
1

N

∑
i

∇ct log f (Yit; θ, αi (θ) , γt (θ))

)
√
NT (γ̂t (θ)− γt (θ))

]

where, as

1

T

∑
t

∇ai log f (Yit; θ, αi (θ) , γt (θ)) = Op

(
T− 1

2

)
,

1

N

∑
i

∇ct log f (Yit; θ, αi (θ) , γt (θ)) = Op

(
N− 1

2

)
,

N/T → κ, α̂i (θ)− αi (θ) = Op

(
T− 1

2

)
, γ̂t (θ)− γt (θ) = Op

(
N− 1

2

)
;

it follows that

1√
NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ))
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=
1√
NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ)) +
√
NTOp

(
T−1)+√

NTOp

(
N−1)

=
1√
NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ)) +

(√
κ+

1√
κ

)
Op (1)

such that, assuming that the stochastic order operator and the expectation can be inter-

changed,

1√
NT

∑
it

E log f (Yit; θ, α̂i (θ) , γ̂t (θ))

=
1√
NT

∑
it

E log f (Yit; θ, αi (θ) , γt (θ)) +

(√
κ+

1√
κ

)
O (1) .

On the other hand, the log-likelihood 1/NT
∑

it log f (Yit; θ, αi (θ) , γt (θ)) is not exposed

to the IPP and hence, may be thought of as an infeasible target function to which an

approximation

1

NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ))

=
1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ)) +
B (θ)

T
+

D (θ)

N
+ op

(
T−1)+ op

(
N−1)

may be constructed for some B (θ) and D (θ) evaluated at αi (θ) and γt (θ). We will present

the exact derivation of B (θ) and D (θ) in section 3. The approximating log-likelihood func-

tion is asymptotically unbiased, i.e.,

1√
NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ)) +
√
NT

B (θ)

T
+

√
NT

D (θ)

N

=
1√
NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ)) +
√
NTop

(
T−1)+√

NTop
(
N−1)

=
1√
NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ)) +

(√
κ+

1√
κ

)
o (1) .

It then follows that, as

1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ)) +
B (θ)

T
+

D (θ)

N

=
1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ)) +
B̂ (θ)

T
+

D̂ (θ)

N
+ op

(
T−1)+ op

(
N−1)

where B̂ (θ) and D̂ (θ) are, respectively, B (θ) and D (θ) evaluated at α̂i (θ) and γ̂t (θ);

θ̃ ≡ argmax
θ

(
1

NT

∑
it

log f (Yit; θ, α̂i (θ) , γ̂t (θ)) +
B̂ (θ)

T
+

D̂ (θ)

N

)
(2.1)

may serve as a bias-corrected estimator of θ, satisfying, when the asymptotic sequence

N/T → κ as N,T −→ ∞, √
NT

(
θ̃ − θ0

)
→d N (0,Σ)
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where N (0,Σ) is the normal distribution with mean zero and covariance matrix Σ being the

standard ML asymptotic variance. Here an important point to be observed is that, when N

and T are small, the maximizer of the infeasible log-likelihood function,

θ ≡ argmax
θ

1

NT

∑
it

log f (Yit; θ, αi (θ) , γt (θ))

still can be slightly biased, typically to the order of Op (1/NT ). This is due to the fact that

the model is nonlinear in θ - see Box (1971) for details.

3 Correcting the Objective Function

3.1 Static Model with Individual and Time Effects

Let

c ≡ (c1, · · · , cT ) , γ̂ ≡ (γ̂1 (θ) , · · · , γ̂T (θ)) , αi ≡ αi (θ) , α̂i ≡ α̂i (θ) ,

li (ai, c) ≡
1

T

∑
t

log f (Yit; θ, ai, ct) , l
(r)
i (ai, c) ≡

1

T

∑
t

∇r
ai

log f (Yit; θ, ai, ct) .

Note that we write ∇r
ai

log f (Yit; θ, ãi, c̃t) for ∇r
ai

log f (Yit; θ, ai, ct) evaluated as some spe-

cific parameter values ai = ãi and ct = c̃t. As similar to Cox and Snell (1968), l
(1)
i (α̂i, γ̂) = 0

and hence can be expanded in ai around αi,

0 = l
(1)
i (αi, γ̂) + l

(2)
i (αi, γ̂) (α̂i − αi) + op

(
T− 1

2

)
0 = l

(1)
i (αi, γ̂) + El(2)i (αi, γ̂) (α̂i − αi) + op

(
T− 1

2

)
where, as (α̂i − αi) = Op

(
T−1/2

)
, replacing l

(2)
i (αi, γ̂) with El(2)i (αi, γ̂) generates a bias to

the negligible order of op
(
T−1/2

)
. Next,

(α̂i − αi) = − l
(1)
i (αi, γ̂)

El(2)i (αi, γ̂)
+ op

(
T− 1

2

)
(3.1)

where, for regular circumstances, El(2)i (αi, γ̂) < 0 such that equation (3.1) is well-defined.

Similarly, for an arbitrarily given c, li (α̂i, c) can also be expanded in ai around αi,

li (α̂i, c) = li (αi, c) + l
(1)
i (αi, c) (α̂i − αi) +

1

2
El(2)i (αi, c) (α̂i − αi)

2 + op
(
T−1)

li (αi, c) = li (α̂i, c)− l
(1)
i (αi, c) (α̂i − αi)−

1

2
El(2)i (αi, c) (α̂i − αi)

2

+op
(
T−1) (3.2)

in which, similarly to the above, replacing l
(2)
i (αi, γ̂) with El(2)i (αi, γ̂) induces a bias to the

negligible order of op
(
T−1

)
. Noticing l

(1)
i (αi, c) = Op

(
T−1/2

)
, combine equation (3.1) and

(3.2),

li (αi, c)
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= li (α̂i, c)− l
(1)
i (αi, c)

(
− l

(1)
i (αi, γ̂)

El(2)i (αi, γ̂)

)
− 1

2
El(2)i (αi, c)

(
− l

(1)
i (αi, γ̂)

El(2)i (αi, γ̂)

)2

+op
(
T−1) .

Here, by the definition of l
(1)
i (ai, c), it is clear that(

l
(1)
i (ai, c)

)2
=

1

T 2

∑
t

[∇ai log f (Yit; θ, ai, ct)]
2

+
1

T 2

∑
t̸=t′

∇ai log f (Yit; θ, ai, ct)∇ai log f (Yit′ ; θ, ai, ct′)

such that

li (αi, c)

= li (α̂i, c)

+
1

T

1/T
∑

t ∇ai log f (Yit; θ, αi, ct)∇ai log f (Yit; θ, αi, γ̂t)

El(2)i (αi, γ̂)

+
1

T

1/T
∑

t̸=t′ ∇ai log f (Yit; θ, αi, ct)∇ai log f (Yit′ ; θ, αi, γ̂t′)

El(2)i (αi, γ̂)

−1

2

1

T

1/T
∑

t [∇ai log f (Yit; θ, αi, γ̂t)]
2 El(2)i (αi, c)(

El(2)i (αi, γ̂)
)2

−1

2

1

T

1/T
∑

t̸=t′ [∇ai log f (Yit; θ, αi, γ̂t)∇ai log f (Yit′ ; θ, αi, γ̂t′)]El
(2)
i (αi, c)(

El(2)i (αi, γ̂)
)2

+op
(
T−1)

where, by the independency across t,

E∇ai log f (Yit; θ, αi, ct)∇ai log f (Yit; θ, αi, γ̂t′) = 0,

E∇ai log f (Yit; θ, αi, γ̂t)∇ai log f (Yit; θ, αi, γ̂t′) = 0

such that

Eli (αi, c) = Eli (α̂i, c) +
Ebi (αi, c)

T
+ o

(
T−1)

= Eli (α̂i, c) +
Ebi (α̂i, c)

T
+ o

(
T−1) (3.3)

with

bi (ai, c) ≡
1/T

∑
t ∇ai log f (Yit; θ, ai, ct)∇ai log f (Yit; θ, ai, γ̂t)

El(2)i (ai, γ̂)

−1

2

1/T
∑

t [∇ai log f (Yit; θ, ai, γ̂t)]
2 El(2)i (ai, c)(

El(2)i (ai, γ̂)
)2 .
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Note that equation (3.3) holds for every c with a slightly embarrassing complication that

bi (α̂i, c) depends on γ̂. This is because l
(1)
i (ai, c) = 0 if and only if ai = α̂i and c = γ̂.

When evaluated at γ̂, bi (α̂i, c) reduces to

bi (α̂i, γ̂) =
1

2

1/T
∑

t [∇ai log f (Yit; θ, α̂i, γ̂t)]
2

El(2)i (α̂i, γ̂)

which coincides in structure with the bias term developed by Arellano and Hahn (2006).

In a similar fashion, let

a ≡ (a1, · · · , aN ) , α̂ ≡ (α̂1 (θ) , · · · , α̂N (θ)) , γt ≡ γt (θ) , γ̂t ≡ γ̂t (θ) ,

lt (a, ct) ≡
1

N

∑
i

log f (Yit; θ, ai, ct) , l
(r)
t (a, ct) ≡

1

N

∑
i

∇r
ct log f (Yit; θ, ai, ct) .

l
(1)
t (α̂, γ̂t) = 0 can be expanded in ct around γt,

0 = l
(1)
t (α̂, γt) + El(2)t (α̂, γt) (γ̂t − γt) + op

(
N− 1

2

)
(γ̂t − γt) = − l

(1)
t (α̂, γt)

El(2)t (α̂, γt)
+ op

(
N− 1

2

)
(3.4)

where El(2)t (α̂, γt) < 0 such that equation (3.4) is well-defined. Next, for an arbitrarily given

a, expand lt (a, γ̂t) in ct around γt,

lt (a, γ̂t) = lt (a, γt) + l
(1)
t (a, γt) (γ̂t − γt) +

1

2
El(2)t (a, γt) (γ̂t − γt)

2 + op
(
N−1)

lt (a, γt) = lt (a, γ̂t)− l
(1)
t (a, γt) (γ̂t − γt)−

1

2
El(2)t (a, γt) (γ̂t − γt)

2

+op
(
N−1) (3.5)

such that a combination of equation (3.4) and (3.5) gives,

lt (a, γt)

= lt (a, γ̂t) +
l
(1)
t (a, γt) l

(1)
t (α̂, γt)

El(2)t (α̂, γt)
− 1

2

(
l
(1)
t (α̂, γt)

)2
El(2)t (a, γt)(

El(2)t (α̂, γt)
)2 + op

(
N−1)

= lt (α, γ̂t)

+
1

N

1/N
∑

i ∇ct log f (Yit; θ, ai, γt)∇ct log f (Yit; θ, α̂i, γt)

El(2)t (α̂, γt)

+
1

N

1/N
∑

i̸=i′ ∇ct log f (Yit; θ, ai, γt)∇ct log f (Yi′t; θ, α̂i′ , γt)

El(2)t (α̂, γt)

−1

2

1

N

1/N
∑

i [∇ct log f (Yit; θ, α̂i, γt)]
2 Elt (a, γt)(

El(2)t (α̂, γt)
)2

−1

2

1

N

1/N
∑

i ̸=i′ [∇ct log f (Yit; θ, α̂i, γt)∇ct log f (Yi′t; θ, α̂i′ , γt)]El
(2)
t (a, γt)(

El(2)t (α̂, γt)
)2

+op
(
N−1)
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where, because of the lack of spatial dependency,

E∇ct log f (Yit; θ, ai, γt)∇ct log f (Yi′t; θ, α̂i′ , γt) = 0,

E∇ct log f (Yit; θ, α̂i, γt)∇ct log f (Yi′t; θ, α̂i′ , γt) = 0

such that

Elt (a, γt) = Elt (a, γ̂t) +
Edt (a, γt)

N
+ o

(
N−1)

= Elt (a, γ̂t) +
Edt (a, γ̂t)

N
+ o

(
N−1) (3.6)

with

dt (a, ct) ≡
1/N

∑
i ∇ct log f (Yit; θ, ai, ct)∇ct log f (Yit; θ, α̂i, ct)

El(2)t (α̂, ct)

−1

2

1/N
∑

i [∇ct log f (Yit; θ, α̂i, ct)]
2 El(2)t (a, ct)(

El(2)t (α̂, ct)
)2 .

Next, observe that, for every a and c,

1

T

∑
t

lt (a, ct) ≡
1

NT

∑
it

log f (Yit; θ, ai, ct) ≡
1

N

∑
i

li (ai, c) , (3.7)

i.e., the change of the order of sums does not affect the value of the sum. It follows that

averaging equation (3.3) evaluated at γ gives

1

N

∑
i
Eli (αi, γ) =

1

N

∑
i
Eli (α̂i, γ) +

1

T

1

N

∑
i
Ebi (α̂i, γ) + o

(
T−1) (3.8)

and averaging equation (3.6) evaluated at α̂ gives

1

T

∑
t
Elt (α̂, γt) =

1

T

∑
t
Elt (α̂, γ̂t) +

1

N

1

T

∑
t
Edt (α̂, γ̂t) + o

(
N−1) (3.9)

such that, if equation (3.7) to (3.9) are combined,

1

N

∑
i
Eli (αi, γ) =

1

T

∑
t

Elt (α̂, γ̂t) +
1

N

1

T

∑
t

Edt (α̂, γ̂t) +
1

T

1

N

∑
i

Ebi (α̂i, γ)

+o
(
T−1)+ o

(
N−1)

where, as Ebi (α̂i, γ̂) = Ebi (α̂i, γ) + o (1),

EL (θ) = EL̂ (θ) +
EB̂ (θ)

T
+

ED̂ (θ)

N
+ o

(
T−1)+ o

(
N−1) (3.10)

with

L (θ) ≡ 1

NT

∑
it
log f (Yit; θ, αi, γt) , L̂ (θ) ≡ 1

NT

∑
it
log f (Yit; θ, α̂i, γ̂t) ,

B̂ (θ) ≡ 1

N

∑
i
bi (α̂i, γ̂) =

1

2

1

N

∑
i

1/T
∑

t [∇ai log f (Yit; θ, α̂i, γ̂t)]
2

El(2)i (α̂i, γ̂)
,

9



D̂ (θ) ≡ 1

T

∑
t
dt (α̂, γ̂t) =

1

2

1

T

∑
t

1/N
∑

i [∇ct log f (Yit; θ, α̂i, γ̂t)]
2

El(2)t (α̂, γ̂t)
.

The corrected log-likelihood can then be constructed as

L̃ (θ) ≡ L̂ (θ) +
B̂ (θ)

T
+

D̂ (θ)

N
(3.11)

in which the right-hand side only depends on Yit, the given θ, α̂i, and γ̂t and hence, can be

constructed in a straightforward way from the data. Here notice that B (θ) and D (θ) are

symmetric in structure. This reflects the fact that ai and ct are interchangeable, which, given

their specification, is obvious. Also, when, for instance, ct disappears, the corresponding

D (θ) drops from equation (3.10) whereas B (θ) remains unaffected.

3.2 Dynamic Model

When Yit are dynamic, a slight modification to equation (3.10) must be adopted. Such

modification is essentially an implementation of the optimal weights introduced by Arellano

and Hahn (2006) into the quantities B (θ) and D (θ). For this reason, we will only briefly

introduce the modification.

Suppose first that Yit are correlated across t but are independent across i. In this case,

D (θ) can be kept intact whereas bi (ai, c) should be modified. More specifically,

bi (ai, c)

≡ 1

2

1/T
∑

t [∇ai log f (Yit; θ, ai, ct)]
2

El(2)i (ai, c)

+
1

2

m∑
τ=−m,τ ̸=0

1
T

min(T,T+τ)∑
t=max(1,τ+1)

wτ∇ai log f (Yit; ·, ct)∇ai log f (Yit−τ ; ·, ct−τ )

El(2)i (ai, c)

where wτ ≡ 1 − τ/ (m+ 1) (the Bartlett kernel weight) and m may be chosen according

to the dynamic, across t, of Yit. In addition, multiple choices of the weight are available -

see, e.g., Fernández-Val and Weidner (2016), Hahn et al. (2007), and Hahn and Kuersteiner

(2011). For a static model, wm = 0 such that the second term in bi (ai, c) drops out. When

Yit are correlated across i, a similar modification of dt (a, ct) is necessary.

3.3 Multiple Fixed Effects

Models with additional effects can also be treated in a similar fashion. Suppose j =

1, · · · , J for an arbitrarily fixed positive integer J and consider the density

f
(
Yi1···iJ ; θ, g

(1)
i1

, · · · , g(J)
iJ

)
, ij = 1, · · · , Nj , Nj ∈ N

where Yi1···iJ are independent across i1, · · · , iJ , while g
(j)
ij

is the ijth fixed-effect parameter

belonging to the jth set of fixed effects and θ is the parameter that applies to all Yi1···iJ .

10



Let

η̂ ≡ η̂
(1)
1 (θ) , · · · , η̂(1)

N1
(θ) , · · · , η̂(J)

1 (θ) , · · · , η̂(J)
NJ

(θ)

≡ arg max
g
(1)
1 ,··· ,g(1)

N1
,··· ,g(J)

1 ,··· ,g(J)
NJ

1∏
j Nj

∑
i1···iJ

log f
(
Yi1···iJ ; θ, g

(1)
i1

, · · · , g(J)
iJ

)
,

η ≡ η
(1)
1 (θ) , · · · , η(1)

N1
(θ) , · · · , η(J)

1 (θ) , · · · , η(J)
NJ

(θ)

≡ arg max
g
(1)
1 ,··· ,g(1)

N1
,··· ,g(J)

1 ,··· ,g(J)
NJ

1∏
j Nj

∑
i1···iJ

E log f
(
Yi1···iJ ; θ, g

(1)
i1

, · · · , g(J)
iJ

)
.

It follows that, after a similar derivation,

ELJ (θ) = EL̂J (θ) +
∑
j

EK̂j (θ)∏
s̸=j Ns

+
∑
j

o

∏
s̸=j

N−1
s

 (3.12)

where,

LJ (θ) ≡ 1∏
j Nj

∑
i1···iJ

log f (Yi1···iJ ; θ, η) , L̂J (θ) ≡ 1∏
j Nj

∑
i1···iJ

log f (Yi1···iJ ; θ, η̂) ,

K̂j (θ) ≡
1

2

1

Nj

∑
ij

∑
s̸=j

∑
is

[
∇

g
(j)
ij

log f (Yi1···iJ ; θ, η̂)

]2
∑
s̸=j

∑
is

∇2

g
(j)
ij

log f (Yi1···iJ ; θ, η̂)
.

Some condition regulating Nj → ∞ must be enforced for equation (3.12) to hold; i.e.,

Nj/Nj′ → κj,j′ , where 0 < κj,j′ < ∞, for all j ̸= j′, all Nj → ∞ at the same speed. In

addition, when the model is dynamic, the modification introduced in section 3.2 may be

implemented into the corresponding Kj (θ).

When J → ∞, an additional condition regulating the speed of convergence of J must

be imposed such that the reminder term
∑

j o
(∏

s̸=j N
−1
s

)
still vanishes at a desired rate.

Suppose Nj = N for every j and some N → ∞,

1

NJ/2

∑
i1···iJ

log f (Y ; θ, η̂) +N
J
2

∑
j

K̂j (θ)

NJ−1

=
1

NJ/2

∑
i1···iJ

log f (Y ; θ, η) + JN
J
2 op

(
N−(J−1)

)
=

1

NJ/2

∑
i1···iJ

log f (Y ; θ, η) + JN− J−2
2 op (1)

in which JN− J−2
2 op (1) = op (1) if JN

− J−2
2 < ∞, i.e.,

J

N (J−2)/2
→ κ′

11



as N, J → ∞ where κ′ < ∞. Under this condition, the asymptotic distribution of

θ̃ ≡ argmax
θ

 1

NJ

∑
i1···iJ

log f (Y ; θ, η̂) +
∑
j

K̂j (θ)

NJ−1


is recentered at 0.

Next, we briefly derive the corrected log-likelihood function for J = 3. When J = 3, we

have the density

f (ai, ct, gs) ≡ f (Yits; θ, ai, ct, gs)

where i = 1, · · · , N , t = 1, · · · , T , s = 1, · · · , S, ai and ct are defined as above, and gs is an

additional effect. Let

α̂1 (θ) , · · · , α̂N (θ) , γ̂1 (θ) , · · · , γ̂T (θ) , η̂1 (θ) , · · · , η̂S (θ)

≡ arg max
a1,··· ,aN ,c1,··· ,cT ,g1,··· ,gS

1

NTS

∑
its

log f (ai, ct, gs) ,

α1 (θ) , · · · , αN (θ) , γ1 (θ) , · · · , γT (θ) , η1 (θ) , · · · , ηS (θ)

≡ arg max
a1,··· ,aN ,c1,··· ,cT ,g1,··· ,gS

1

NTS

∑
its

E log f (ai, ct, gs) ,

li (ai, c, g) ≡
1

TS

∑
ts

log f (ai, ct, gs) ,

l
(r)
i (ai, c, g) ≡

1

TS

∑
ts

∇r
ai

log f (ai, ct, gs)

where g ≡ (g1, · · · , gS). Observing l
(1)
i (α̂i, γ̂, η̂) = 0 where η̂ ≡ (η̂1 (θ) , · · · , η̂S (θ)), an

expansion of l
(1)
i (α̂i, γ̂, η̂) = 0 in ai around αi gives

0 = l
(1)
i (αi, γ̂, η̂) + El(2)i (αi, γ̂, η̂) (α̂i − αi) + op

(
1√
TS

)
(α̂i − α̂i) = − l

(1)
i (αi, γ̂, η̂)

El(2)i (αi, γ̂, η̂)
+ op

(
1√
TS

)
;

and a similar expansion of li (α̂i, c, g) gives

li (αi, c, g) = li (α̂i, c, g)− l
(1)
i (αi, c, g) (α̂i − αi)−

1

2
El(2)i (αi, c, g) (α̂i − αi)

2 + op

(
1

TS

)
.

It follows that

li (αi, c, g) = li (α̂i, c, g)− l
(1)
i (αi, c, g)

(
− l

(1)
i (αi, γ̂, η̂)

El(2)i (αi, γ̂, η̂)

)

−1

2
El(2)i (αi, c, g)

(
l
(1)
i (αi, γ̂, η̂)

El(2)i (αi, γ̂, η̂)

)2

+ op

(
1

TS

)

such that, as

l
(1)
i (αi, γ̂, η̂) l

(1)
i (αi, c, g)

12



=
1

(TS)2

∑
ts

∇ai log f (αi, γ̂t, η̂s)∇ai log f (αi, ct, gs)

+
1

(TS)2

∑
(t,t′,s,s′)∈T S

∇ai log f (αi, γ̂t, η̂s)∇ai log f (αi, ct′ , gs′) ,

(
l
(1)
i (αi, γ̂, η̂)

)2
=

1

(TS)2

∑
ts

[∇ai log f (αi, γ̂t, η̂s)]
2

+
1

(TS)2

∑
(t,t′,s,s′)∈T S

∇ai log f (αi, γ̂t, η̂s)∇ai log f (αi, γ̂t′ , η̂s′)

in which

η̂s ≡ η̂s (θ) , T S ≡
{(

t, t′, s, s′
)
|t ̸= t′ ∨ s ̸= s′; t, t′ = 1, · · · , T ; s, s′ = 1, · · · , S

}
,

E∇ai log f (αi, γ̂t, η̂s)∇ai log f (αi, ct′ , gs′) = 0,

E∇ai log f (αi, γ̂t, η̂s)∇ai log f (αi, γ̂t′ , η̂s′)=0.

We then have

Eli (αi, c, g) = Eli (α̂i, c, g) +
Ebi (αi, c, g)

TS
+ o

(
1

TS

)
= Eli (α̂i, c, g) +

Ebi (α̂i, c, g)

TS
+ o

(
1

TS

)
where

bi (ai, c, g) ≡
1/TS

∑
ts ∇ai log f (ai, γ̂t, η̂s)∇ai log f (ai, ct, gs)

El(2)i (ai, γ̂, η̂)

−1

2

1/TS
∑

ts [∇ai log f (ai, γ̂t, η̂s)]
2 El(2)i (ai, c, g)(

El(2)i (ai, γ̂, η̂)
)2 .

By a similar derivation,

Elt (a, γt, g) = Elt (a, γ̂t, g) +
Edt (a, γt, g)

NS
+ o

(
1

NS

)
= Elt (a, γ̂t, g) +

Edt (a, γ̂t, g)

NS
+ o

(
1

NS

)
Els (a, c, ηs) = Els (a, c, η̂s) +

Eks (a, c, ηs)

NT
+ o

(
1

NT

)
= Els (a, c, η̂s) +

Eks (a, c, η̂s)

NT
+ o

(
1

NT

)
where

lt (a, ct, g) ≡
1

NS

∑
is

log f (ai, ct, gs) , l
(r)
t (a, ct, g) ≡

1

NS

∑
is

∇r
ct log f (ai, ct, gs) ,

ls (a, c, gs) ≡
1

NT

∑
it

log f (ai, ct, gs) , l(r)s (a, c, gs) ≡
1

NT

∑
it

∇r
gs log f (ai, ct, gs) ,
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dt (a, ct, g) ≡
1/NS

∑
is ∇ct log f (α̂i, ct, η̂s)∇ct log f (ai, ct, gs)

El(2)t (α̂, ct, η̂)

− 1

2

1/NS
∑

is [∇ct log f (α̂i, ct, η̂s)]
2 El(2)t (a, ct, g)(

El(2)t (α̂, ct, η̂)
)2 ,

ks (a, c, gs) ≡
1/NT

∑
it ∇gs log f (α̂i, γ̂t, gs)∇gs log f (ai, ct, gs)

El(2)s (α̂, γ̂, gs)

− 1

2

1/NT
∑

it [∇gs log f (α̂i, γ̂t, gs)]
2 El(2)s (a, c, gs)(

El(2)s (α̂, γ̂, gs)
)2 .

Next, as
1

N

∑
i

li (ai, c, g) ≡
1

T

∑
t

lt (a, ct, g) ≡
1

S

∑
s

ls (a, c, gs)

and, letting η ≡ (η1 (θ) , · · · , ηS (θ)),

1

N

∑
i

Eli (αi, γ, η) =
1

N

∑
i

Eli (α̂i, γ, η) +
1

N

∑
i

Ebi (α̂i, γ, η)

TS
+ o

(
1

TS

)
,

1

T

∑
t

Elt (α̂, γt, η) =
1

T

∑
t

Elt (α̂, γ̂t, η) +
1

T

∑
t

Edt (α̂, γ̂t, η)

NS
+ o

(
1

NS

)
,

1

S

∑
s

Els (α̂, γ̂, ηs) =
1

S

∑
s

Els (α̂, γ̂, η̂s) +
1

S

∑
s

Eks (α̂, γ̂, η̂s)

NT
+ o

(
1

NT

)
;

it follows that

1

N

∑
i

Eli (αi, γ, η)

=
1

T

∑
t

Elt (α̂, γ̂t, η) +
1

T

∑
t

Edt (α̂, γ̂t, η)

NS
+

1

N

∑
i

Ebi (α̂i, γ, η)

TS

+o

(
1

TS

)
+ o

(
1

NS

)
=

1

S

∑
s

Els (α̂, γ̂, η̂s) +
1

S

∑
s

Eks (α̂, γ̂, η̂s)

NT
+

1

T

∑
t

Edt (α̂, γ̂t, η)

NS

+
1

N

∑
i

Ebi (α̂i, γ, η)

TS
+ o

(
1

TS

)
+ o

(
1

NS

)
+ o

(
1

NT

)
=

1

S

∑
s

Els (α̂, γ̂, η̂s) +
1

S

∑
s

Eks (α̂, γ̂, η̂s)

NT
+

1

T

∑
t

Edt (α̂, γ̂t, η̂)

NS
+

O (1/NT )

NS

+
1

N

∑
i

Ebi (α̂i, γ̂, η̂)

TS
+

O (1/NS)

TS
+

O (1/NT )

TS

+o

(
1

TS

)
+ o

(
1

NS

)
+ o

(
1

NT

)
in which

O (1/NT )

NS
= o

(
1

NTS

)
,

O (1/NS)

TS
= o

(
1

NTS

)
,

O (1/NT )

TS
= o

(
1

NTS

)
.
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Finally,

EL (θ) = EL̂ (θ) +
EB̂ (θ)

TS
+

ED̂ (θ)

NS
+

EK̂ (θ)

NT
+ o

(
1

TS

)
+ o

(
1

NS

)
+ o

(
1

NT

)
(3.13)

where

L (θ) ≡ 1

NTS

∑
its

log f (αi, γt, ηs) , L̂ (θ) =
1

NTS

∑
its

log f (α̂i, γ̂t, η̂s) ,

B̂ (θ) ≡ 1

N

∑
i

bi (α̂i, γ̂, η̂) , D̂ (θ) ≡ 1

T

∑
t

dt (α̂, γ̂t, η̂) ,

K̂ (θ) ≡ 1

S

∑
s

ks (α̂, γ̂, η̂s) .

We present a simple example in section 4.1 regarding the application of equation (3.13).

4 Application of Correction

4.1 Analytical Correction of Many-normal-mean Model

The first example is a variation of the Neyman and Scott (1948) variance example. Let

Yit ∼ N
(
αi + γ

t
, θ0
)
where N

(
αi + γ

t
, θ0
)
is the normal density with mean αi + γ

t
and

variance θ0. The individual log-likelihood for a single Yit follows as

log f (Yit; θ, ai, ct) = −1

2
log (2π)− 1

2
log θ − (Yit − ai − ct)

2

2θ

and the log-likelihood of all observations follows as

1

NT

∑
it

log f (Yit; θ, ai, ct) = −1

2
log (2π)− 1

2
log θ − 1

NT

∑
it

(Yit − ai − ct)
2

2θ
.

Here it is obvious that αi and γ
t
, and hence the estimators α̂i and γ̂

t
, are not uniquely

identified. This, however, does not affect the analysis, because the following can be set up,

similar to Fernández-Val and Weidner (2016),

γ
t

≡ 0,

α̂i ≡ 1

T

∑
t

Yit, γ̂t ≡
1

N

∑
i

Yit −
1

NT

∑
it

Yit

from which we have

1

NT

∑
it

log f (Yit; θ, α̂i, γ̂t) = −1

2
log (2π)− 1

2
log θ − 1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ
,

whose maximum is achieved when

0 =
1

NT

∑
it

∂ log f (Yit; θ, α̂i, γ̂t)

∂θ
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= −1

2

1

θ
+

1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ2

where, as θ ̸= 0 and under N,T → ∞,

θ̂ =
1

NT

∑
it

(Yit − α̂i − γ̂t)
2 = θ0 −

θ0
T

− θ0
N

+
θ0
NT

= θ0 +Op

(
N−1)+Op

(
T−1) .

The corrected log-likelihood defined in equation (3.11) can be applied to this model.

Observe that

∇ai log f (Yit; θ, ai, ct) =
Yit − ai − ct

θ
, ∇ct log f (Yit; θ, ai, ct) =

Yit − ai − ct
θ

,

∇2
ai

log f (Yit; θ, ai, ct) = −1

θ
, ∇2

ct log f (Yit; θ, ai, ct) = −1

θ

such that

bi (α̂i, γ̂) = − 1

T

∑
t

(Yit − α̂i − γ̂t)
2

2θ
, dt (α̂, γ̂t) = − 1

N

∑
i

(Yit − α̂i − γ̂t)
2

2θ

and that the corrected profiled log-likelihood is

L̃ (θ) = −1

2
log (2π)− 1

2
log θ − 1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ

− 1

T

1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ
− 1

N

1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ

= −1

2
log (2π)− 1

2
log θ −

(
1 +

1

T
+

1

N

)
1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ
,

which is maximized when

0 = −1

2

1

θ
+

(
1 +

1

T
+

1

N

)
1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ2

such that

θ̃ =

(
1 +

1

T
+

1

N

)
1

NT

∑
it

(Yit − α̂i − γ̂t)
2 =

(
1 +

1

T
+

1

N

)
θ̂

= θ0

(
1 +

1

T
+

1

N

)(
1− 1

T
− 1

N
+

1

NT

)
= θ0 −

θ0
NT

− θ0
T 2

− θ0
N2

+
θ0

N2T
+

θ0
NT 2

implying, as N/T → κ when N,T → ∞,

θ̃ − θ0 = Op

(
1

NT

)
= op

(
T−1)+ op

(
N−1) .
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Here one should observe that θ̃ possesses a higher-order bias to the order of op (1/NT ) which

does not exist in θ̂. This is because the correction terms themselves depend on plug-in

estimates. This will generate a bias to the higher order, i.e.,

1

T
Ebi (α̂i, γ̂) =

1

T
Ebi (αi, γ) +

1

T
O
(
T−1)+ 1

T
O
(
N−1) ,

1

N
Edt (α̂, γ̂t) =

1

N
Edt (α, γt) +

1

N
O
(
T−1)+ 1

N
O
(
N−1) .

Second, θ̃ would not be fully unbiased even when α and γ were plugged into the correction

terms. To see this, suppose

bi (αi, γ) = − 1

T

∑
t

(Yit − αi − γt)
2

2θ
, dt (α, γt) = − 1

N

∑
i

(Yit − αi − γt)
2

2θ

were plugged in, the corrected profile log-likelihood would then be

−1

2
log (2π)− 1

2
log θ − 1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ

− 1

T

1

NT

∑
it

(Yit − αi − γt)
2

2θ
− 1

N

1

NT

∑
it

(Yit − αi − γt)
2

2θ
,

which is maximized when

0 = −1

2

1

θ
+

1

NT

∑
it

(Yit − α̂i − γ̂t)
2

2θ2
+

(
1

T
+

1

N

)
1

NT

∑
it

(Yit − αi − γt)
2

2θ2

θ̂
∗

=
1

NT

∑
it

(Yit − α̂i − γ̂t)
2 +

(
1

T
+

1

N

)
1

NT

∑
it

(Yit − αi − γt)
2 ,

i.e.,

θ̂
∗
= θ0 +

θ0
NT

= θ0 +Op

(
1

NT

)
implying that there is still a bias that is of the order of Op (1/NT ).

Next, let us introduce an additional nuisance parameter such that

Yits ∼ N
(
αi + γ

t
+ ηs, θ0

)
and that the individual log-likelihood for a single Yits becomes

log f (Yits; θ, ai, ct, gs) = −1

2
log (2π)− 1

2
log θ − (Yits − ai − ct − gs)

2

2θ
.

This corresponds to the J = 3 case introduced in section 3.3. For

γ
t

= ηs = 0, α̂i ≡
1

TS

∑
ts

Yits,

γ̂t ≡ 1

NS

∑
is

Yits −
1

NTS

∑
its

Yits, η̂s ≡ 1

NT

∑
it

Yits −
1

NTS

∑
its

Yits,
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the profiled log-likelihood becomes

log f (Yits; θ, α̂i, γ̂t, η̂s) = −1

2
log (2π)− 1

2
log θ − 1

NTS

∑
its

(Yits − α̂i − γ̂t − η̂s)
2

2θ
,

which is maximized when

0 = −1

2

1

θ
+

1

NTS

∑
its

(Yits − α̂i − γ̂t − η̂s)
2

2θ

θ̂ =
1

NTS

∑
its

(Yits − α̂i − γ̂t − η̂s)
2 .

Here it can be shown that, after some algebra,

θ̂ = θ0 −
θ0
TS

− θ0
NS

− θ0
NT

+Op

(
1

NTS

)
.

For the correction, observe that

bi (α̂i, γ̂, η̂) = − 1

TS

∑
ts

(Yit − α̂i − γ̂t − η̂s)
2

2θ
,

dt (α̂, γ̂t, η̂) = − 1

NS

∑
is

(Yit − α̂i − γ̂t − η̂s)
2

2θ
,

ks (α̂, γ̂, η̂s) = − 1

NT

∑
it

(Yit − α̂i − γ̂t − η̂s)
2

2θ

such that the corrected profiled log-likelihood follows as

L̃ (θ) = −1

2
log (2π)− 1

2
log θ

−
(
1 +

1

NS
+

1

NT
+

1

TS

)
1

NTS

∑
its

(Yit − α̂i − γ̂t − η̂s)
2

2θ
,

which is maximized when

0 = −1

2

1

θ
+

(
1 +

1

NS
+

1

NT
+

1

TS

)
1

NTS

∑
its

(Yit − α̂i − γ̂t − η̂s)
2

2θ

such that

θ̃ =

(
1 +

1

NS
+

1

NT
+

1

TS

)
θ̂

=

(
1 +

1

NS
+

1

NT
+

1

TS

)(
θ0 −

θ0
TS

− θ0
NS

− θ0
NT

)
+Op

(
1

NTS

)
= θ0 +Op

(
1

NTS

)
,

which indicates, under N/S → κN,S and S/T → κS,T as N,T, S → ∞ where 0 < κN,S < ∞
and 0 < κS,T < ∞,

θ̃ − θ0 = Op

(
1

NTS

)
.
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4.2 Correction of Static Logit

The next example is the static logit model. We consider

Yit = 1 (Xitθ0 + αi + γt + εit ≥ 0)

where εit follows a standard logistic distribution and Xit is a scalar covariate.

Tables 1, 2, and 3 present simulation results of the logit model under three different

designs.

1. Xit ∼ N (0, 1) and αi = γt = 0 for all i and t. This represents the case where the

model could be consistently estimated by a pooled logit.

2. Xit ∼ N (0, 1), αi ∼ N (0, 1/16), and γt ∼ N (0, 1/16). This represents the case where

the model could be consistently estimated by a random-effect logit.

3. Xit ∼ N (αi + γt, 1) with αi ∼ N (0, 1/16) and γt ∼ N (0, 1/16). This represents the

case where the model must be estimated by a fixed-effect logit.

The number of replications in the Monte Carlo experiment is 1, 000 with N , T , and θ0

chosen according to the description in the tables. Notice that the IPP occurs when αi and

γt are allowed to be estimated. That is, even when αi = γt = 0, i.e., the underlying model

is a pooled logit, estimating a fixed-effect model would induce the IPP.

We find that the correction is generally sufficient given the variation of θ̂. For example

in design 1 and under θ0 = 0.5 and N,T = 10, the correction technique reduces the bias by a

percentage of roughly 67%. The RMSEs also improve significantly. Under the same setting,

the RMSE is reduced by roughly 24%. This highlights a distinct feature of the analytical

correction, i.e., the correction technique typically would not induce a large dispersion to

the estimators. The finite-sample properties of the corrected estimators, therefore, are more

desirable in terms of the variation. On the other hand in design 3, we find that there are

two cases (bold) where the bias in θ̃ seems to increase when N,T are increased from 40 to

80. We regard this as a consequence of the variation that is still large.

Figures 1 and 2 present plots of the profiled log-likelihood functions for N,T = 10,

N,T = 20, N,T = 40, and N,T = 80. The model is Yit = 1 (Xitθ0 + αi + γt + εit ≥ 0)

where εit is standard logistically distributed, Xit ∼ N (0, 1), αi = γt = 0, and θ0 = 0.5.

The plotted quantities are L̂ (θ) (circle), L̃ (θ) (triangle), and L (θ) (asterisk) computed for

θ = 0.3, · · · , 0.7 with a step of 0.01. The plotted quantities are evaluated on a single simulated

dataset. Compared with L̂ (θ), we find that the approximation of L̃ (θ), the corrected profiled

log-likelihood, to L (θ), the infeasible profiled log-likelihood, is dramatically improved for

every chosen θ even when N,T are small. In addition, the maximizer, in θ, of L̃ (θ) is very

close to that of L (θ).

On the other hand, we find that L (θ) is still biased in the sense that the maximizer in θ

of L (θ) is not θ0. This may be due to two facts. First, when N,T are small, L (θ) remains

random with a large variation such that θ ≡ argmaxθ L (θ) has a large variation. Second,

L (θ) is nonlinear in θ such that θ, in general, possesses a bias up to the order of Op (1/NT ),

which may not be negligible when N,T are very small.

19



T
a
b
le

1
:
D
o
u
b
le

IP
P

-
S
im

u
la
ti
o
n
R
es
u
lt

fo
r
L
o
g
it

M
o
d
el

-
D
es
ig
n
1

S
et
ti
n
g

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

N
,T

=
1
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.6
5
6
4

0
.3
1
2
9

0
.3
5
9
1

−
0
.6
5
5
8

0
.3
1
1
6

0
.3
5
3
9

1
.3
2
1
6

0
.3
2
1
6

0
.5
2
6
2

−
1
.3
2
2
4

0
.3
2
2
4

0
.5
5
2
0

θ̃
0
.5
5
1
0

0
.1
0
2
1

0
.2
7
3
5

−
0
.5
5
0
7

0
.1
0
1
3

0
.2
6
9
7

1
.0
8
6
0

0
.0
8
6
0

0
.3
3
6
9

−
1
.0
8
4
9

0
.0
8
4
9

0
.3
5
7
6

N
,T

=
2
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
5
7
5

0
.1
1
4
9

0
.1
3
9
8

−
0
.5
6
4
0

0
.1
2
8
0

0
.1
4
4
5

1
.1
3
5
9

0
.1
3
5
9

0
.2
1
9
9

−
1
.1
3
0
0

0
.1
3
0
0

0
.2
1
0
3

θ̃
0
.5
0
9
5

0
.0
1
8
9

0
.1
1
6
6

−
0
.5
1
5
2

0
.0
3
0
4

0
.1
1
8
9

1
.0
3
0
0

0
.0
3
0
0

0
.1
5
7
4

−
1
.0
2
4
8

0
.0
2
4
8

0
.1
5
0
1

N
,T

=
4
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
2
8
0

0
.0
5
6
0

0
.0
6
7
4

−
0
.5
2
7
3

0
.0
5
4
6

0
.0
6
3
9

1
.0
5
5
8

0
.0
5
5
8

0
.0
9
2
9

−
1
.0
5
9
8

0
.0
5
9
8

0
.0
9
2
8

θ̃
0
.5
0
3
7

0
.0
0
7
4

0
.0
5
8
6

−
0
.5
0
3
0

0
.0
0
6
0

0
.0
5
5
2

1
.0
0
3
9

0
.0
0
3
9

0
.0
7
0
3

−
1
.0
0
7
7

0
.0
0
7
7

0
.0
6
7
6

N
,T

=
8
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
1
2
8

0
.0
2
5
6

0
.0
3
0
2

−
0
.5
1
3
6

0
.0
2
7
1

0
.0
3
2
7

1
.0
2
9
8

0
.0
2
9
8

0
.0
4
5
5

−
1
.0
2
8
2

0
.0
2
8
2

0
.0
4
5
2

θ̃
0
.5
0
0
5

0
.0
0
0
9

0
.0
2
6
7

−
0
.5
0
1
3

0
.0
0
2
5

0
.0
2
9
1

1
.0
0
3
7

0
.0
0
3
7

0
.0
3
3
6

−
1
.0
0
2
2

0
.0
0
2
2

0
.0
3
4
4

N
o
te
s:

B
ia
s
is

p
re
se
n
te
d
re
la
ti
v
e
to

θ
0
.
T
h
e
n
u
m
b
er

o
f
re
p
li
ca

ti
o
n
s
is

1
,0

0
0
.
M
o
d
el
:
Y
i
t
=

1
(X

i
t
θ
0
+

α
i
+

γ
t
+

ε i
t
≥

0
)
w
h
er
e
ε i

t
is

st
a
n
d
a
rd

-l
o
g
is
ti
ca

ll
y
d
is
tr
ib
u
te
d
,
X

i
t
∼

N
(0
,1

),
a
n
d
α

i
=

γ
t
=

0
.
θ̂
is

th
e
o
ri
g
in
a
l
es
ti
m
a
te
,
θ̃
is

th
e
b
ia
s-
co

rr
ec
te
d
es
ti
m
a
te
.

20



T
a
b
le

2
:
D
o
u
b
le

IP
P

-
S
im

u
la
ti
o
n
R
es
u
lt

fo
r
L
o
g
it

M
o
d
el

-
D
es
ig
n
2

S
et
ti
n
g

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

N
,T

=
1
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.6
3
1
4

0
.2
6
2
8

0
.3
4
4
2

−
0
.6
4
7
2

0
.2
9
4
5

0
.3
6
3
4

1
.3
0
5
2

0
.3
0
5
2

0
.5
5
5
5

−
1
.2
9
3
0

0
.2
9
3
0

0
.5
1
9
3

θ̃
0
.5
2
9
8

0
.0
5
9
5

0
.2
6
6
1

−
0
.5
4
1
5

0
.0
8
3
0

0
.2
7
8
5

1
.0
6
9
2

0
.0
6
9
2

0
.3
6
0
1

−
1
.0
6
4
2

0
.0
6
4
2

0
.3
3
7
2

N
,T

=
2
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
5
7
6

0
.1
1
5
1

0
.1
4
4
6

−
0
.5
5
5
3

0
.1
1
0
5

0
.1
4
2
2

1
.1
3
1
1

0
.1
3
1
1

0
.2
0
4
7

−
1
.1
3
6
0

0
.1
3
6
0

0
.2
1
4
5

θ̃
0
.5
0
9
3

0
.0
1
8
6

0
.1
2
1
0

−
0
.5
0
7
4

0
.0
1
4
9

0
.1
1
9
5

1
.0
2
5
7

0
.0
2
5
7

0
.1
4
3
0

−
1
.0
2
9
9

0
.0
2
9
9

0
.1
5
1
3

N
,T

=
4
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
3
1
1

0
.0
6
2
1

0
.0
6
7
2

−
0
.5
2
8
3

0
.0
5
6
5

0
.0
6
3
3

1
.0
5
9
6

0
.0
5
9
6

0
.0
9
2
5

−
1
.0
5
5
8

0
.0
5
5
8

0
.0
9
2
5

θ̃
0
.5
0
6
9

0
.0
1
3
7

0
.0
5
7
2

−
0
.5
0
4
2

0
.0
0
8
3

0
.0
5
4
1

1
.0
0
7
7

0
.0
0
7
7

0
.0
6
7
4

−
1
.0
0
4
1

0
.0
0
4
1

0
.0
6
9
9

N
,T

=
8
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
1
2
4

0
.0
2
4
8

0
.0
3
1
0

−
0
.5
1
5
0

0
.0
2
9
9

0
.0
3
2
4

1
.0
2
7
8

0
.0
2
7
8

0
.0
4
4
4

−
1
.0
2
7
8

0
.0
2
7
8

0
.0
4
3
7

θ̃
0
.5
0
0
2

0
.0
0
0
4

0
.0
2
7
7

−
0
.5
0
2
7

0
.0
0
5
4

0
.0
2
8
2

1
.0
0
1
7

0
.0
0
1
7

0
.0
3
3
7

−
1
.0
0
1
7

0
.0
0
1
7

0
.0
3
2
7

N
o
te
s:

B
ia
s
is

p
re
se
n
te
d
re
la
ti
v
e
to

θ
0
.
T
h
e
n
u
m
b
er

o
f
re
p
li
ca

ti
o
n
s
is

1
,0

0
0
.
M
o
d
el
:
Y
i
t
=

1
(X

i
t
θ
0
+

α
i
+

γ
t
+

ε i
t
≥

0
)
w
h
er
e
ε i

t
is

st
a
n
d
a
rd

-l
o
g
is
ti
ca

ll
y
d
is
tr
ib
u
te
d
,
X

i
t
∼

N
(0
,1

),
α

i
∼

N
(0
,1

/
1
6
),

a
n
d
γ
t
∼

N
(0
,1

/
1
6
).

θ̂
is

th
e
o
ri
g
in
a
l
es
ti
m
a
te
,
θ̃
is

th
e
b
ia
s-
co

rr
ec
te
d

es
ti
m
a
te
.

21



T
a
b
le

3
:
D
o
u
b
le

IP
P

-
S
im

u
la
ti
o
n
R
es
u
lt

fo
r
L
o
g
it

M
o
d
el

-
D
es
ig
n
3

S
et
ti
n
g

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

M
ea

n
B
ia
s

R
M
S
E

N
,T

=
1
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.6
3
5
0

0
.2
7
0
1

0
.3
4
9
8

−
0
.6
2
7
3

0
.2
5
4
6

0
.3
4
2
3

1
.3
1
7
6

0
.3
1
7
6

0
.5
6
1
9

−
1
.3
0
9
2

0
.3
0
9
2

0
.5
5
4
1

θ̃
0
.5
2
1
5

0
.0
4
3
0

0
.2
6
5
4

−
0
.5
2
8
6

0
.0
5
7
2

0
.2
6
4
7

1
.0
6
4
0

0
.0
6
4
0

0
.3
5
8
6

−
1
.0
7
1
8

0
.0
7
1
8

0
.3
6
5
9

N
,T

=
2
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
6
1
1

0
.1
2
2
2

0
.1
5
0
4

−
0
.5
5
3
6

0
.1
0
7
1

0
.1
3
9
7

1
.1
3
7
0

0
.1
3
7
0

0
.2
1
6
4

−
1
.1
3
9
9

0
.1
3
9
9

0
.2
1
3
9

θ̃
0
.5
0
8
6

0
.0
1
7
2

0
.1
2
5
1

−
0
.5
0
6
0

0
.0
1
2
0

0
.1
1
7
1

1
.0
2
5
2

0
.0
2
5
2

0
.1
5
1
1

−
1
.0
3
1
9

0
.0
3
1
9

0
.1
4
7
5

N
,T

=
4
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
2
6
3

0
.0
5
2
7

0
.0
6
6
2

−
0
.5
2
8
4

0
.0
5
6
7

0
.0
6
3
8

1
.0
5
7
4

0
.0
5
7
4

0
.0
9
6
3

−
1
.0
5
9
8

0
.0
5
9
8

0
.0
9
4
5

θ̃
0
.4
9
9
5

−
0
.0
0
1
0

0
.0
5
8
0

−
0
.5
0
5
0

0
.0
1
0
1

0
.0
5
4
7

1
.0
0
2
1

0
.0
0
2
1

0
.0
7
3
0

−
1
.0
0
7
0

0
.0
0
7
0

0
.0
6
9
7

N
,T

=
8
0

θ
0
=

0
.5

θ
0
=

−
0
.5

θ
0
=

1
θ
0
=

−
1

θ̂
0
.5
1
5
1

0
.0
3
0
2

0
.0
3
1
4

−
0
.5
1
3
7

0
.0
2
7
5

0
.0
3
1
0

1
.0
2
9
6

0
.0
2
9
6

0
.0
4
5
9

−
1
.0
2
8
5

0
.0
2
8
5

0
.0
4
4
9

θ̃
0
.5
0
1
9

0
.0
0
3
8

0
.0
2
6
9

−
0
.5
0
1
7

0
.0
0
3
4

0
.0
2
7
1

1
.0
0
2
4

0
.0
0
2
4

0
.0
3
4
3

−
1
.0
0
2
1

0
.0
0
2
1

0
.0
3
3
7

N
o
te
s:

B
ia
s
is

p
re
se
n
te
d
re
la
ti
v
e
to

θ
0
.
T
h
e
n
u
m
b
er

o
f
re
p
li
ca

ti
o
n
s
is

1
,0

0
0
.
M
o
d
el
:
Y
i
t
=

1
(X

i
t
θ
0
+

α
i
+

γ
t
+

ε i
t
≥

0
)
w
h
er
e
ε i

t
is

st
a
n
d
a
rd

-l
o
g
is
ti
ca

ll
y
d
is
tr
ib
u
te
d
a
n
d
X

i
t
∼

N
(α

i
+

γ
t
,1

)
w
it
h
α

i
∼

N
(0
,1

/
1
6
)
a
n
d
γ
t
∼

N
(0
,1

/
1
6
).

θ̂
is

th
e
o
ri
g
in
a
l
es
ti
m
a
te
,
θ̃
is

th
e

b
ia
s-
co

rr
ec
te
d
es
ti
m
a
te
.

22



Figure 1: Double IPP - Plot of Profiled Log-likelihood for Logit - Part 1
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Notes: Computed on a single simulated dataset. Model: Yit = 1 (Xitθ0 + αi + γt + εit ≥ 0) where
εit is standard-logistically distributed, Xit ∼ N (0, 1), αi = γt = 0, and θ0 = 0.5. θ chosen from the

region depicted on the horizontal axis with a step of 0.01. Circle: L̂ (θ); triangle: L̃ (θ); and

asterisk: L (θ). All curves are vertically shifted such that they coincide at θ (maximizer of the
infeasible log-likelihood). Vertical lines at maximizers.
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Figure 2: Double IPP - Plot of Profiled Log-likelihood for Logit - Part 2
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Notes: Computed on a single simulated dataset. Model: Yit = 1 (Xitθ0 + αi + γt + εit ≥ 0) where
εit is standard-logistically distributed, Xit ∼ N (0, 1), αi = γt = 0, and θ0 = 0.5. θ chosen from the

region depicted on the horizontal axis with a step of 0.01. Circle: L̂ (θ); triangle: L̃ (θ); and

asterisk: L (θ). All curves are vertically shifted such that they coincide at θ (maximizer of the
infeasible log-likelihood). Vertical lines at maximizers.
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4.3 Correction of Static Probit

Next, we consider the probit model

Yit = 1 (Xitθ0 + αi + γt + εit ≥ 0)

where εit ∼ N (0, 1) and Xit is a scalar covariate.

Tables 4, 5, and 6 present results of the simulation of the probit model under similar

designs as in section 4.2. We find similar patterns as in the logit example. The correction

is generally sufficient and does not induce large dispersion on the estimators. For example,

when N,T = 80, θ̃ is only slightly biased (maximum 0.3% in all design) whereas θ̂ is still

roughly 3% biased. In addition, the variation of θ̂ and θ̃ are smaller than those from the

logit model when θ0 is small, e.g., 0.5.

Figures 3 and 4 present plots of the profiled log-likelihood functions for N,T = 10,

N,T = 20, N,T = 40, and N,T = 80. The model is Yit = 1 (Xitθ0 + αi + γt + εit ≥ 0)

where εit ∼ N (0, 1), Xit ∼ N (0, 1), αi = γt = 0, and θ0 = 0.5. The plotted quantities are

L̂ (θ) (circle), L̃ (θ) (triangle), and L (θ) (asterisk), computed for θ = 0.3, · · · , 0.7 with a step

of 0.01. The plotted quantities are evaluated on a single simulated dataset. We observe a

similar pattern as in the logit case, i.e., L̃ (θ) serves as a better approximation of L (θ) than

L̂ (θ).
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Figure 3: Double IPP - Plot of Profiled Log-likelihood for Probit - Part 1
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εit ∼ N (0, 1), Xit ∼ N (0, 1), αi = γt = 0, and θ0 = 0.5. θ chosen from the region depicted on the

horizontal axis with a step of 0.01. Circle: L̂ (θ); triangle: L̃ (θ); and asterisk: L (θ). All curves are

vertically shifted such that they coincide at θ (maximizer of the infeasible log-likelihood). Vertical
lines at maximizers.
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Figure 4: Double IPP - Plot of Profiled Log-likelihood for Probit - Part 2
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εit ∼ N (0, 1), Xit ∼ N (0, 1), αi = γt = 0, and θ0 = 0.5. θ chosen from the region depicted on the

horizontal axis with a step of 0.01. Circle: L̂ (θ); triangle: L̃ (θ); and asterisk: L (θ). All curves are

vertically shifted such that they coincide at θ (maximizer of the infeasible log-likelihood). Vertical
lines at maximizers.
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5 Conclusion

The estimator θ̂ of the parameter that is common to all observations in a nonlinear fixed-

effect model with both individual and time effect could contain a substantial bias. When

N/T converges to a constant, the bias enters the asymptotic distribution of
√
NT

(
θ̂ − θ0

)
such that the distribution is not centered at 0. We propose a likelihood-based bias correction

technique that eliminates such bias to the first order. We focus on a simple setting where

Yit is static and the model contains only individual and time effects, and we show that our

method is effective, given the large variation, in correcting the bias even when N and T are

still small. Our method does not impose restrictions on how the effects enter the model, and

therefore, covers a very general class of models in which the individual and time effects do

not enter additively.

In addition, we briefly discuss the incorporation of dynamic models where Yit are cor-

related across i and t and the accommodation of models with more than two sets of fixed

effects. However, these discussions are very brief in the sense that further research may be

necessary. For instance, we argue that dynamic models can be implemented with our cor-

rection technique provided that the observation-level scores are averaged with the Bartlett

kernel weight. Such weight is optimal in the setting where only individual effects are present

but is not guaranteed to remain optimal when both individual and time effects are included.

In addition, we have not investigated the effect of different choices in the weights used to

average the observation-level score.

Alternatively, one may also wonder if a higher-order approximation of L (θ) can be de-

rived. While this may be worth studying, such a correction may be difficult to derive. To

see this, suppose that L̂ follows an asymptotic expansion

L̂ (θ) = L (θ) +
B1 (θ)

T
+

D1 (θ)

N
+

W (θ)

NT
+

B2 (θ)

T 2
+

D2 (θ)

N2
+ · · ·

for some Bj (θ) and Dj (θ) defined in a similar way as B (θ) and D (θ) and some W (θ)

depending only on θ. Here the existence of Bj (θ) and Dj (θ) is due to the inclusion of

individual and time effects whereas the existence of W (θ) is due to the fact that L̂ (θ) is,

in general, nonlinear in θ, i.e., the log-likelihood function would still contain a bias (away

from the expected value) even when the individual and time effects were not included. Our

method essentially eliminates B1 (θ) and D1 (θ) while W (θ) is left untreated. For a higher-

order bias correction technique, B1 (θ), D1 (θ), B2 (θ), D2 (θ), and as well as W (θ) must all

be eliminated.

Beyond the proposed directions, further studies may be conducted for, e.g., a variance

estimator of θ̃ that possesses more desired finite-sample properties than the standard ML

variance; or, e.g., how L̃ (θ) would benefit inferences based on likelihood such as the likelihood

ratio test.
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