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We propose sparse versions of multivariate GARCH models that allow for volatility and cor-
relation spillover effects across assets. The proposed models are generalizations of existing 
diagonal DCC and BEKK models, yet they remain estimable for high-dimensional systems of 
asset returns. To cope with the high dimensionality of the model parameter spaces, we employ 
the L1 regularization technique to penalize the off-diagonal elements of the coefficient matri-
ces. A simulation experiment for the sparse DCC model shows that the true underlying sparse 
parameter structure can be uncovered reasonably well. In an application to weekly and daily 
market returns for 24 countries using data from 1994 to 2014, we find that the sparse DCC 
model outperforms the standard DCC and the diagonal DCC models in and out of sample. 
Likewise, the sparse BEKK model outperforms the diagonal BEKK model.

Keywords: multivariate GARCH, regularization, penalized estimation, volatility spillovers, 
correlation spillovers.

1. INTRODUCTION

The estimation of conditional covariances between asset returns is central to many areas of

empirical finance, including portfolio selection, asset pricing, and hedging. A large literature 
has developed exploring models of the multivariate GARCH family. Two widely used models are

the BEKK model and the scalar DCC model, proposed by Engle and Kroner (1995) and Engle 
(2002), respectively. A shortcoming of these models is that they do not allow for volatility or

correlation spillover effects across assets. In the scalar DCC model, the asset return correlations

are assumed to evolve identically for all assets. This entails no restriction for bivariate systems, 
but when the number of assets is large this assumption is hard to defend. To address this

problem, “diagonal” and “full” versions of the DCC model have been proposed; see, e.g., Engle

(2002), Cappiello et al. (2006), Hafner and Franses (2009), and Billio and Caporin (2009). But 
these do not fully solve the problem. While the diagonal DCC model allows for idiosyncratic

correlation dynamics, it still ignores correlation spillover effects. The full DCC model allows 
for correlation spillovers, but here the number of parameters is of order n2, with n the number

of assets considered, so estimation of the full DCC model is feasible only when n is small.

Essentially the same holds for BEKK models, where the diagonal model version ignores volatility 
spillovers and the full model version allows them but runs into estimation problems unless n
is small. In short, in multivariate GARCH modeling there is a conflict between flexibility and

feasibility of estimation.
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In this paper we develop sparse versions of the DCC and BEKK models that seek to mitigate

this conflict. The sparse models that we propose are more flexible than the diagonal models, yet

more parsimonious than the full models. They are intended to capture correlation and volatility

spillover effects while still being estimable when the dimension, n, is large (n = 24 in our

application). Prior to estimation, the sparse models can be viewed as full models, with parameter

restrictions imposed along the estimation in a data-compatible way. The sparse parameter

structure is obtained by regularization. Specifically, we add a lasso penalty (Tibshirani 1996)

to the log-likelihood function to penalize the off-diagonal elements of the coefficient matrices.

This drives many of the off-diagonal elements to zero, so that a sparse structure of correlation

or volatility spillover effects obtains.

Section 2 introduces the sparse DCC and BEKK models. Section 3 presents the results of

a simulation experiment for the sparse DCC model. In Section 4 we estimate and evaluate

sparse DCC and BEKK models for weekly and daily market returns for 24 countries using data

from 1994 to 2014. We also compare the empirical performance of the sparse models with the

diagonal BEKK model and with the scalar and diagonal DCC models using Diebold-Mariano

tests. Section 5 concludes.

2. SPARSE MULTIVARIATE GARCH MODELS

2.1. Specification

Let rt be the vector of returns on n assets in period t. We assume that Et−1rt = 0, where Et−1

is the conditional expectation given past information. Define the conditional and unconditional

variance and correlation matrices

Ht = Et−1(rtr
′
t), H = E(rtr

′
t),

Rt = Et−1(εtε
′
t) = D−1t HtD

−1
t , R = E(εtε

′
t),

where εt is the vector of standardized returns and Dt is the diagonal matrix with the conditional

standard deviations of the returns on the diagonal, i.e.,

εt = D−1t rt, Dt = (In �Ht)
1/2,

where � is the Hadamard product. Multivariate GARCH models specify how Ht and Rt evolve

over time, often through a first-order ARMA-type structure.

One challenge in multivariate GARCH modeling is to keep the model sufficiently flexible

while preventing the number of parameters from growing too rapidly with n. See, for example,

the discussion in Bauwens, Laurent, and Rombouts (2006). Leaving other differences aside,

multivariate GARCH models typically come, in increasing order of generality, in “scalar”, “di-

agonal”, and “general” versions, with O(1), O(n), and O(n2) parameters, respectively. It is

generally acknowledged that the richly parameterized models, with O(n2) parameters, can only

be estimated sensibly when n is small enough (say, up to n = 4). For greater n, researchers tend

to resort to scalar or diagonal model versions, with O(1) or O(n) free parameters. These more

tightly parameterized models result from imposing prior restrictions on the coefficient matrices.

Our strategy is to avoid imposing such restrictions. Starting from a rich model specification
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with O(n2) paramaters, we impose parameter sparsity through L1 regularization. In this way,

the sparsity structure is the result of a data-driven procedure instead of being imposed ex ante.

Consider the general DCC model with the correlation part specified as

Rt = (In �Qt)−1/2Qt(In �Qt)−1/2, (2.1)

Qt = R−ARA′ −BRB′ +Aεt−1ε
′
t−1A

′ +BQt−1B
′, (2.2)

where A and B are coefficient matrices. This is the model of Cappiello, Engle, and Sheppard

(2006) without the asymmetry term. For given R (which can be pre-estimated by correlation

targeting), this model has 2n2 correlation parameters. The scalar version of the model is the

standard DCC model of Engle (2002), with A = aIn, B = bIn, and scalar parameters a and

b. The diagonal version restricts A and B to be diagonal matrices and has 2n correlation

parameters (Cappiello, Engle, and Sheppard 2006; Hafner and Franses 2009). Other variants

include models with regime switching correlations (Pelletier 2006) or a block structure on A and

B, possibly obtained via clustering (Billio, Caporin, and Gobbo 2006; Billio and Caporin 2009;

Otranto 2010). A common motivation in these papers is to specify the asset return correlation

dynamics flexibly, yet tractably for estimation. Our approach is to obtain sparsely parameterized

correlation dynamics via an L1 penalized log-likelihood with penalty function

penλA,λB (A,B) = λA
∑
i6=j

|Aij |+ λB
∑
i6=j

|Bij |

for chosen tuning parameters λA > 0 and λB > 0. Note that only the off-diagonal elements

of A and B enter the penalty function. The effect of L1 penalization is that estimates of the

off-diagonal elements of A and B are being shrunk towards zero, typically resulting in many

estimates being identically zero. Therefore, the estimated model lies between the diagonal and

the general model versions.

The penalization approach can be applied in the same way to multivariate GARCH models

that specify Ht directly. For example, the first-order BEKK model of Engle and Kroner (1995),

subject to the variance targeting constraint, specifies

Ht = H −AHA′ −BHB′ +Art−1r
′
t−1A

′ +BHt−1B
′, (2.3)

which is analogous to (2.2) and has analogous scalar and diagonal versions. Hence, penalization

of A and B in the BEKK model can proceed in exactly the same way as in the DCC model.

The distinction between different types of tuning parameters (here, λA and λB) in the penalty

function allows additional modeling and penalization flexibility. For example, setting 0 < λA <

∞ and λB = ∞ imposes diagonality on B and sparsity on the off-diagonal elements of A.

Furthermore, the model can easily be extended to incorporate slowly changing unconditional

variances or correlations (Engle and Rangel 2008; Hafner and Linton 2010; Bauwens, Hafner, and

Pierret 2013) or additional effects such as asymmetries (Cappiello, Engle, and Sheppard 2006).

Additional effects typically entail additional parameter matrices, which may be penalized as

above to the desired degree. Note, furthermore, that penalization of the diagonal model version

also fits into our framework, by writing A = aIn + diag(α) and B = bIn + diag(β), where a

and b are scalars and α and β are vectors, and using penλα,λβ (α, β) = λα
∑
i |αi| + λβ

∑
i |βi|

as penalty function.
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2.2. Estimation

To estimate the sparse DCC model we use the two-step procedure of Engle (2002), augmented

with penalization in the second step. The volatility part of the DCC model consists of n uni-

variate GARCH(1,1) models, one for each asset, with parameters denoted as θ. The correlation

part consists of (2.1)–(2.2), with parameters φ = (A,B). The penalized Gaussian quasi log-

likelihood, for given R and tuning parameters λ = (λA, λB), is

lpen(θ, φ) = −1

2

∑
t

(n log(2π) + log |Ht|+ r′tH
−1
t rt)− penλ(φ)

= lv(θ) + lc(θ, φ)− penλ(φ),

where lv and lc correspond to the volatility and correlation parts,

lv(θ) = −1

2

∑
t

(n log(2π) + 2 log |Dt|+ r′tD
−2
t rt),

lc(θ, φ) = −1

2

∑
t

(log |Rt|+ ε′tR
−1
t εt − ε′tεt),

as in Engle (2002). In step one, lv(θ) is maximized by fitting a GARCH(1,1) model for each

asset separately. This gives θ̂, D̂t, ε̂t = D̂−1t rt, and lc(θ̂, φ), with T−1
∑
t ε̂tε̂

′
t as the correlation-

targeting estimate of R. The second step is to solve

max
φ

{
lc(θ̂, φ)− penλ(φ)

}
,

for which we use the block-coordinate update method. Dividing φ = (φpen, φunp) into a block

of penalized parameters φpen and a block of unpenalized parameters φunp, we update one

block at the time, cycling over the two blocks until convergence. We update φunp with the

Newton-Raphson method and φpen with the coordinate ascent optimization algorithm (given

that penλ(φ) is not differentiable in φpen at the origin). This algorithm updates one parameter

at the time, with all others held fixed, cycling over the penalized parameters until convergence.

The parameter update of φj ∈ φpen is as follows: if |∇φj lc(θ̂, φ)|φj=0 is less than the tuning

parameter, φj is set to zero; else φj is set to arg maxφj lc(θ̂, φ).

The sparse BEKK model with volatility specification (2.3) and parameters φ = (A,B) can

be estimated along the same lines in one step by maximizing lpen(φ) = lv(φ)− penλ(φ), where

lv(φ) = − 1
2

∑
t(n log(2π) + log |Ht|+ r′tH

−1
t rt) and with T−1

∑
t rtr

′
t as the variance-targeting

estimate of H.

At each iteration along the optimization, we impose positive definiteness on Qt or Ht (in the

DCC or BEKK model, respectively) for all t in the estimation sample. This guarantees positive

definiteness at the converged estimates in the estimation sample, but not necessarily outside

the estimation sample, although we did not encounter this problem. Should it occur, one may

impose a positive lower bound on the eigenvalues of Qt or Ht. Without further restriction, the

sparse GARCH models do not guarantee positive definiteness.

Multivariate GARCH models with high-dimensional parameters are numerically challenging

to estimate. The penalization step is numerically slow, adding to the challenge. Furhtermore,

the degree of regularization is controlled by the tuning parameters λA and λB , which have to

be chosen. At the present stage, we set λB = ∞ and impose the further restriction B = bIn,
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where b is a scalar. Hafner and Franses (2009) noted that, in the diagonal DCC model, the

parameters associated with the autoregressive part Qt−1 are less varying than those associated

with the innovations εtε
′
t. So, broadly speaking, B may be more tightly parameterized than A.

With B = bIn, we have φ = (A, b) and φpen consists of the off-diagonal elements of A only. We

choose λA by cross-validation, using approximately the first 90% of the data as training sample

and the remaining 10% as validation sample, involving the following steps:

(i) based on the training sample, we estimate φunp with φpen set to zero;

(ii) at these values of φunp and φpen, we compute the log-likelihood gradient vector for φpen,

that is, Gφpen
= ∇φpen

lc(θ̂, φ) (in the DCC model) or Gφpen
= ∇φpen

lv(φ) (in the BEKK

model);

(iii) we compute the 68–96th percentiles, in steps of 4%, of the elements of |Gφpen
|;

(iv) for λA equal to each of these percentiles, we compute the penalized estimate of φ based on

the training sample and evaluate the unpenalized log-likelihood on the validation sample

at this value of φ;

(v) we choose the value of λA that maximizes this log-likelihood.

3. SIMULATIONS

This section reports on simulations for the sparse DCC model. The simulation setup broadly

mimics the dimension and properties of the daily market index return data of 24 developed

countries for 1994–2014 that we use in the empirical application discussed in the next section.

Our aim here is to explore how well the estimator can detect the sparse parameter structure

in a large-dimensional, highly parameterized DCC model. As in Hafner and Franses (2009), we

focus on the model’s correlation part only, ignoring the volatility part. So we set Dt = In and

only carried out step 2 of the estimation. We generated data rt = εt for t = 1, . . . , 5000 (and a

burn-in sample of 1000 periods) according to

εt ∼ N(0, Rt), Rt = (In �Qt)−1/2Qt(In �Qt)−1/2,

Qt = R−ARA′ − b2R+Aεt−1ε
′
t−1A

′ + b2Qt−1,

with n = 24, b2 = 0.995, R equal to the empirical daily return correlation matrix, and A chosen

as follows. We drew the diagonal elements of A from the uniform distribution U [.8c, 1.2c] with

mean c = .07, set 20 randomly chosen off-diagonal elements of A equal to the values in the set

±c · {.01, .02, .1, .15, .2} (each value being repeated twice), and set the other 532 off-diagonal

elements of A equal to zero. We generated 20 simulated data sets in this way.

For each simulated data set, we estimated φ = (A, b) as outlined above, with the correlation

matrix of the simulated data as an estimate of R. To reduce the computation time, we fixed the

tuning parameter λA at the 88th percentile of |Gφpen
| (computed from the full simulated data

set) instead of determining λA by cross-validation. Table 1 is a contingency table of the true

and estimated off-diagonal elements of A, averaged across the simulations. As the table shows,

the underlying sparsity structure is uncovered reasonably well, with two thirds of the “large”

nonzero parameter values (those in ±c · {.1, .15, .2}) being detected and 95% of the zeros being

estimated at zero. As expected, “small” nonzero parameter values (those in ±c · {.01, .02}) are

much harder to detect: only 8% are estimated to be nonzero.
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Table 1. Estimated versus true sparsity

estimated zero estimated nonzero total

true zero 503.85 28.15 532
true “small” 7.35 0.65 8
true “large” 4.00 8.00 12

total 515.20 36.80 552

“Small” refers to values in ±c · {.01, .02}. “Large” refers to values in ±c · {.1, .15, .2}.

Table 2 gives details for each simulation separately. The first three columns pertain to the

off-diagonal elements of A, giving the number of true zeros estimated at zero, and the number

of “small” and “large” values, respectively, estimated to be nonzero. The last four columns

report the true and estimated values of the average of the diagonal elements of A and b2. These

estimates are very close to the true values, although b̂2 tends to slightly underestimate b2.

Table 2. Estimation results for each simulation

zero “small” “large”
∑
iAii/n

∑
i Âii/n b2 b̂2

503 1 9 0.0697 0.0688 0.995 0.9945
498 1 7 0.0689 0.0666 0.995 0.9946
506 2 10 0.0714 0.0709 0.995 0.9948
507 0 5 0.0700 0.0718 0.995 0.9943
500 0 7 0.0719 0.0726 0.995 0.9943
508 0 9 0.0687 0.0679 0.995 0.9946
502 0 9 0.0660 0.0650 0.995 0.9946
502 2 9 0.0666 0.0641 0.995 0.9946
511 1 9 0.0683 0.0683 0.995 0.9946
508 1 7 0.0670 0.0674 0.995 0.9947
505 1 9 0.0688 0.0697 0.995 0.9944
502 1 7 0.0710 0.0691 0.995 0.9947
505 0 10 0.0687 0.0690 0.995 0.9946
517 0 9 0.0690 0.0695 0.995 0.9944
503 0 7 0.0685 0.0690 0.995 0.9944
484 0 5 0.0666 0.0648 0.995 0.9946
513 0 9 0.0697 0.0703 0.995 0.9943
504 1 8 0.0668 0.0665 0.995 0.9948
502 0 8 0.0674 0.0664 0.995 0.9946
497 2 7 0.0705 0.0688 0.995 0.9949

The first three columns refer to the off-diagonal elements of A (532 zeros, 8 “small” values, and
12 “large” values) and report the numbers of zeros estimated as zero, “small” values estimated
as nonzero, and “large” values estimated as nonzero, respectively.

4. APPLICATION TO MARKET RETURNS FOR 24 COUNTRIES, 1994-2014

We estimate and compare scalar, diagonal, and sparse multivariate GARCH models for weekly

and daily market returns of 24 countries with developed stock markets over the period March

1, 1994, to July 7, 2014. The countries are Australia, Austria, Belgium, Canada, Denmark,
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Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, the Netherlands,

New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom,

and the United States. We use the MSCI market index data, expressed in U.S. dollars, as

obtained from Datastream with code names ‘MS****$(MSPI)’, e.g., ‘MSAUST$(MSPI)’ for

Australia. The returns are computed in logarithmic form and demeaned prior to the analysis.

4.1. Results for weekly returns

We divide the data into 3 parts, with the first 80% as the in-sample training data, the next 10%

as the in-sample validation data, and the remaining 10% as the out-of-sample testing data. The

procedure outlined above selects the tuning parameter λA as the 68th percentile of |Gφpen
| for

the sparse DCC model and as the 76th percentile for the sparse BEKK model.

Using the in-sample training and validation data, we estimate the sparse DCC and BEKK

models (with the corresponding λA obtained), the scalar and diagonal DCC models, and the

diagonal BEKK model. Table 3 reports a summary of the parameter estimates and the in-

sample and out-of-sample average log-likelihood per observation for each model. The sparse

DCC model has the greatest in-sample and out-of-sample average log-likelihood values and the

diagonal BEKK model has the least.

Further, we compare each pair of GARCH models with the Diebold and Mariano (1995) test,

with minus the out-of-sample log-likelihood as the loss function. Table 4 reports the t statistics

of the Diebold-Mariano test. The sparse DCC model is significantly better than the scalar DCC

model and the sparse BEKK model is significantly better than the diagonal BEKK model.

We also examine the relative performance of the GARCH models with the asset-allocation

methodology proposed by Engle and Colacito (2006). Consider an asset allocation problem for n

assets with return vector rt whose conditional variance matrix is Ht. The variance minimization

problem is

min
wt

w′tHtwt subject to w′t1n = 1,

where 1n is an n× 1 vector of ones. The solution is

wt =
H−1t 1n

1′nH
−1
t 1n

and the minimum-variance portfolio has return w′trt. With the out-of-sample squared return

(w′trt)
2 as the loss function, we compare each pair of GARCH models using the Diebold-Mariano

test. In addition to the portfolios constructed from the GARCH models, we also consider the

equally-weighted portfolio, with weights wt = n−11n, and the constantly-weighted portfolio

with weights wt = (1′nH
−1

1n)−1H
−1

1n based on the unconditional variance of rt. Table 4

shows that in terms of asset allocation the diagonal DCC model performs best, followed by

the sparse DCC model. The sparse BEKK outperforms the diagonal BEKK model, but is

dominated by the DCC models. With a few exceptions, however, the differences between the

GARCH models are not statistically significant. The equally-weighted portfolio performs worst:

is dominated by the GARCH-based portfolios and the dominations are statistically significant.
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Table 3. Weekly returns: model estimates and log-likelihood values

model log-likelihood log-likelihood number of a or b or

in sample out-of-sample parameters
∑
iAii/n

∑
iBii/n

sparse DCC −49.7362 −43.8634 104 + 72 0.0946 0.9867

diagonal DCC −49.9267 −43.8900 25 + 72 0.0986 0.9864
scalar DCC −50.0578 −43.9560 2 + 72 0.0974 0.9896
sparse BEKK −50.3628 −44.7004 118 0.1351 0.9752
diagonal BEKK −50.5471 −44.8087 48 0.1429 0.9721

DCC specifications: Qt = R − ARA′ − b2R + Aεt−1ε′t−1A
′ + b2Qt−1 with A = aIn in the

scalar DCC, A diagonal in the diagonal DCC, and A unrestricted in the sparse DCC. BEKK
specifications: Ht = H−AHA′−BHB′+Art−1r′t−1A

′+BHt−1B′ with A and B diagonal in the
diagonal BEKK, and A unrestricted and B diagonal in the sparse BEKK. For the DCC models
the number of parameters is split between those in the correlation part and the 3 × 24 = 72
parameters in the volatility part.

Table 4. Weekly returns: Diebold-Mariano tests based on the out-of-sample log-likelihood value

sparse DCC diag. DCC scalar DCC sparse BEKK diag. BEKK

sparse DCC − −1.0110 −2.4585 −3.6973 −4.1673

diagonal DCC 1.0110 − −2.0843 −3.4874 −3.9360
scalar DCC 2.4585 2.0843 − −3.1148 −3.5421
sparse BEKK 3.6973 3.4874 3.1148 − −4.5769
diagonal BEKK 4.1673 3.9360 3.5421 4.5769 −
average loss 43.8634 43.8900 43.9560 44.7004 44.8087

Entries: t statistics of the Diebold-Mariano test of the null that the corresponding row
and column models have equal expected loss, with minus the out-of-sample log-likelihood
as the loss function. A positive t statistic indicates that the column model is better than
the row model in that it has the least loss of the two models.

Table 5. Weekly returns: Diebold-Mariano tests based on out-of-sample asset allocation

sparse diagonal scalar sparse diagonal constant equal

DCC DCC DCC BEKK BEKK weight weight

sparse DCC − 0.8869 −0.8994 −0.2511 −0.3004 −0.8123 −3.3329

diag. DCC −0.8869 − −2.5607 −0.4149 −0.4651 −0.9792 −3.4462
scalar DCC 0.8994 2.5607 − −0.0743 −0.1349 −0.6853 −3.3061
sparse BEKK 0.2511 0.4149 0.0743 − −0.3983 −1.8908 −3.3305
diag. BEKK 0.3004 0.4651 0.1349 0.3983 − −1.9458 −3.3412
const. weight 0.8123 0.9792 0.6853 1.8908 1.9458 − −3.1579
equal weight 3.3329 3.4462 3.3061 3.3305 3.3412 3.1579 −
average loss 1.6088 1.5826 1.6428 1.6562 1.6679 1.7932 3.2492

Entries: t statistics of the Diebold-Mariano test of the null that the corresponding row
and column models have equal expected loss, with the out-of-sample squared portfolio
return (expressed in %) as the loss function. A positive t statistic indicates that the
column model is better than the row model in that it has the least loss of the two
models.

4.2. Results for daily returns

For the daily returns we use the same 80-10-10% division of the data into in-sample training,

in-sample validation, and out-of-sample testing data. The tuning parameter, λA, is selected as
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the 68th percentile of |Gφpen | for the sparse DCC and sparse BEKK models. Table 6 gives a

summary of the estimated parameters and the average log-likelihood values. Again, the sparse

DCC model has the greatest average log-likelihood, both in and out of sample, and the diagonal

BEKK model has the least.

Tables 7 and 8 report Diebold-Mariano model comparison tests based on out-of-sample log-

likelihood values and asset allocation, parallelling the earlier Tables 4 and 5. When the loss

function is minus the log-likelihood (Table 7), again the sparse DCC model performs best

and the sparse BEKK model outperforms the diagonal BEKK model. Surprisingly, though, the

statistical significance of the t statistics has gone down. With the squared portfolio return as loss

function (Table 8), we now see that the sparse BEKK model almost significantly outperforms

all other models, followed by the diagonal BEKK model. The equally-weighted and constantly-

weighted portfolios are significantly dominated by GARCH-based portfolios.

Table 6. Daily returns: model estimates and log-likelihood values

model log-likelihood log-likelihood number of a or b or

in sample out-of-sample parameters
∑
iAii/n

∑
iBii/n

sparse DCC −31.1275 −25.2177 97 + 72 0.0700 0.9960

diagonal DCC −31.1797 −25.2299 25 + 72 0.0698 0.9963
scalar DCC −31.2522 −25.3101 2 + 72 0.0665 0.9974
sparse BEKK −31.8493 −25.4974 99 0.1088 0.9921
diagonal BEKK −31.8993 −25.5155 48 0.1090 0.9922

DCC specifications: Qt = R − ARA′ − b2R + Aεt−1ε′t−1A
′ + b2Qt−1 with A = aIn in the

scalar DCC, A diagonal in the diagonal DCC, and A unrestricted in the sparse DCC. BEKK
specifications: Ht = H−AHA′−BHB′+Art−1r′t−1A

′+BHt−1B′ with A and B diagonal in the
diagonal BEKK, and A unrestricted and B diagonal in the sparse BEKK. For the DCC models
the number of parameters is split between those in the correlation part and the 3 × 24 = 72
parameters in the volatility part.

Table 7. Daily returns: Diebold-Mariano tests based on the out-of-sample log-likelihood value

sparse DCC diag. DCC scalar DCC sparse BEKK diag. BEKK

sparse DCC − −0.6149 −2.4440 −1.8176 −1.8890

diagonal DCC 0.6149 − −2.4001 −1.6575 −1.7340
scalar DCC 2.4440 2.4001 − −1.0458 −1.1277
sparse BEKK 1.8176 1.6575 1.0458 − −1.4975
diagonal BEKK 1.8890 1.7340 1.1277 1.4975 −
average loss 25.2177 25.2299 25.3101 25.4974 25.5155

Entries: t statistics of the Diebold-Mariano test of the null that the corresponding row
and column models have equal expected loss, with minus the out-of-sample log-likelihood
as the loss function. A positive t statistic indicates that the column model is better than
the row model in that it has the least loss of the two models.
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Table 8. Daily returns: Diebold-Mariano tests based on out-of-sample asset allocation

sparse diagonal scalar sparse diagonal constant equal

DCC DCC DCC BEKK BEKK weight weight

sparse DCC − −0.3639 −1.1187 1.8451 1.5121 −2.1703 −6.5138

diag. DCC 0.3639 − −0.8987 1.8507 1.5290 −2.1173 −6.5660
scalar DCC 1.1187 0.8987 − 2.1551 1.8319 −1.8202 −6.3710
sparse BEKK −1.8451 −1.8507 −2.1551 − −1.5919 −4.9064 −6.6528
diag. BEKK −1.5121 −1.5290 −1.8319 1.5919 − −4.7745 −6.5977
const. weight 2.1703 2.1173 1.8202 4.9064 4.7745 − −6.1165
equal weight 6.5138 6.5660 6.3710 6.6528 6.5977 6.1165 −
average loss 0.2367 0.2371 0.2401 0.2219 0.2239 0.2646 0.6335

Entries: t statistics of the Diebold-Mariano test of the null that the corresponding row
and column models have equal expected loss, with the out-of-sample squared portfolio
return (expressed in %) as the loss function. A positive t statistic indicates that the
column model is better than the row model in that it has the least loss of the two
models.

4.3. Daily volatility and correlation spillover effects

The main advantage of the sparse BEKK and DCC models, relative to their scalar and diag-

onal versions, is that they allow volatility and correlation spillovers through the off-diagonal

elements of A. Consider the sparse BEKK model. If Aij is non-zero, then a shock to market

j’s return at time t − 1 will affect market i’s volatility at time t. Figure 1 depicts the esti-

mated volatility spillover effects graphically. Each directed arrow corresponds to a non-zero

estimated off-diagonal element of A in the sparse BEKK model for daily returns, with thicker

lines representing stronger effects. The estimates suggest that there are no or few volatility

spillover effects from and to the stock markets in Australia, Israel, Japan, and Singapore. In

contrast, most European stock markets and the German market in particular appear to have

strong spillover effects with each other. The volatility of the German stock market seems to be

affected by spillover effects from the U.S., France, Ireland, the Netherlands, and Spain, and to

exhibit spillover effects to Japan and Switzerland.

Australia

Austria

Belgium

Canada

Denmark

FinlandFranceGermany

Greece

Hong Kong

Ireland

Israel

Italy

Japan

Netherlands

New Zealand

Norway

Portugal SingaporeSpain

Sweden

Switzerland

UK

USA

Figure 1. Volatility spillover estimates in the sparse BEKK model (daily returns)
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In similar fashion, the sparse DCC model is able to capture correlation spillovers through

the off-diagonal elements of A. Figure 2 shows the correlation spillover effects, analogous to

Figure 1, based on the estimated sparse DCC model for daily returns. Again, many intra-

European spillover effects are found. In particular, there seem to be strong correlation spillovers

from Sweden to Finland, from Austria to Denmark and Ireland, and from Greece to Portugal.

The German stock market also appears to have many correlation spillover effects with other

countries.
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Netherlands
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Figure 2. Correlation spillover estimates in the sparse DCC model (daily returns)

4.4. Daily conditional volatilities, co-volatilities, and correlations

Here we present and briefly discuss a selection of the time series of daily conditional volatilities,

co-volatilities, and correlations as implied by the sparse BEKK and DCC models.

Figure 3 displays the conditional co-volatilities (Ht)ij , based on the sparse BEKK model, for

a selection of country pairs (i, j). There were extremely large covariances between the markets

around November 2008. Only the Japanese stock market had less dramatic covariances with

the other markets during this period of crisis. The covariances between European markets were

still high in the period 2009–2013, while those between Japan, Hong Kong, Singapore, and New

Zealand quickly came back to near pre-crisis levels.

Figure 4 presents a selection of conditional correlations (Rt)ij based on the sparse DCC

model. Many correlations reached their peak in November 2008. This suggests that the high

conditional covariances in 2008 were not only driven by the high volatilities per se, but also by

increased correlations. In addition, many correlations show an upward trend over the twenty-

year period considered here, although the phenomenon is not universal across countries. A

particularly striking example is the German and French stock markets, where the sparse DCC

model indicates a rapidly increasing correlation between 1997 and 1999, followed by a further

gradual increase towards almost 1. The pattern of increased correlations over time for some

countries and not for others is in line with the findings of Bekaert et al. (2009). They showed that

there is a statistically significant upward trend in the correlations among European countries and
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a nearly significant upward trend between Europe and the U.S., while for the other correlations

the upward trend is weaker and statistically not significant.
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Figure 3. Daily conditional co-volatilities in the sparse BEKK model
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Figure 5 shows the conditional volatilities (Ht)ii of the stock markets in the U.S., UK, Ger-

many, Japan, and Greece, based on the sparse DCC model. The volatilities were indeed dra-

matically high during the 2008 credit crunch, which is probably the main driving factor of the

high conditional covariances in 2008. The volatility of the Greek stock market was higher than

that of the other markets and remained high in 2009–2013.
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Figure 5. Conditional daily volatilities in the sparse DCC model

5. CONCLUDING REMARKS

In this paper, we propose a sparse modeling approach towards multivariate GARCH. The focus

is on GARCH(1, 1) structures, the generalization to higher orders being obvious. Our approach

allows to explore the dynamics of large-dimensional financial time series, with particular atten-

tion to uncovering volatility or correlation spillover effects. As the number of potential spillover

effects increases quadratically with the dimension of the system, some form of regularization is

needed, resulting in a sparse structure of identified spillover effects.

In our application to weekly and daily market returns for 24 countries over the last two

decades, we find that the sparse DCC model systematically outperforms the DCC models that

exclude correlation spillover effects. The sparse BEKK model, likewise, performs better than

the diagonal BEKK model, which excludes volatility spillovers.

Our empirical study further indicates that European stock markets have pronounced volatility

and correlation spillovers to each other. The model estimates suggest, in particular, strong
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volatility and correlation spillovers from and to the German stock market. On the other hand,

the stock markets in Singapore, Australia, Japan, and Israel appear relatively more isolated,

with few spillover effects. The sparse model estimates also indicate that, at the high of the 2008

credit crunch, the conditional covariances of the stock markets were dramatically high, partly

caused by the conditional correlations being at their peak over the last twenty years.

One of the present limitations of our approach is that due to the lasso regularization technique,

it is difficult to construct parameter confidence sets and to carry out statistical tests on the

parameters.
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