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1 Introduction and background

We test a conditional Solnik-Sercu international capital asset pricing model (InCAPM)

using a GARCH-in-mean framework on a rather wide range of assets (24 stock market

indices and 4 currencies). On the methodology side, we find that the two-step estimation

method of Bali and Engle (2010), the only procedure applied hitherto to such a broad menu

of assets, delivers risk-return coefficient estimates and standard errors that have substantial

downward bias. One-step estimation, although computationally more demanding, mitigates

these problems. On the empirical side, using various model specifications, data frequencies,

and markets considered, we obtain one-step market risk-return estimates on the order of

6. We also find that, while currency risk is priced—at least for the bigger currencies—the

estimated prices of risk do not fit the static model well.

In the static InCAPM, aggregation of asset demand proceeds from the national level

to the ‘world’ level, the economic space that encompasses all countries with mutually open

financial markets. Every investor’s asset demand is of the usual mean-variance optimum

type: the portfolio is efficient in terms of the investor’s own real units. But as relative

purchasing power parity does not hold, the real returns realized on a given portfolio by

agents from different countries are generally not equal. To be able to aggregate, the means

and covariances that show up in the demand equations for investors from various countries

must be translated into a common real unit, a procedure that introduces covariances with

real exchange rates into the total-demand equation (Solnik 1974; Sercu 1980). Assuming

that local inflation can be ignored—for instance, if it is uncorrelated with asset returns—

these covariances simplify to covariances with percentage changes in the nominal exchange

rates of all foreign countries.

For simplicity, consider the case where countries have equal relative risk aversions, θ.

The price of currency risk, in the static model, then equals wj(1− θ), where wj is country

j’s share in the world’s total invested wealth. Since even the share of the U.S. in the world’s

wealth is at most one fourth and θ is well above unity, the price of currency risk should be

(i) negative, (ii) much smaller in magnitude than the price of market risk, and (iii) closer

to zero the less wealthy the country. It must be realized, however, that in a dynamic model

these characteristics are likely to be obscured by other effects. Notably, the exchange rates

then play a role not only as variables that pick up country-specific changes in purchasing

power, but also as state variables. A falling Euro, for example, may drastically affect

the risk-return prospects of erstwhile marginal exporters in Europe and their competitors

elsewhere. If investors regard such a shift in the investment opportunity set as undesirable,

it must be offset by an extra risk premium on Euro over and above wj(1 − θ). Obviously,

in that case the total price of currency risk is less easily characterized.

There is, by now, an impressive amount of literature on InCAPM tests. To situate

our paper, we relate it to two seminal papers: Dumas and Solnik (1995) and De Santis

and Gerard (1998). Dumas and Solnik (1995) let returns be partly predictable and test

a conditional CAPM estimated by GMM. Their study covers the stock markets of 4 large

countries—Germany, Japan, the United Kingdom, and the United States—and the corre-

sponding 3 exchange rates relative to the U.S. dollar. They find that currency risk premia

are needed to fit the data, and that the price of currency risk is not constant. De Santis

and Gerard (1998) adopt a GARCH-M framework. For the sake of feasibility they limit

their study to the same 7 assets. Their conclusions are similar: the prices of currency risk
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are significant, provided that they are allowed to change over time.

Estimating a multivariate GARCH-M model with a substantially larger dimension in

one step is computationally challenging. Bali and Engle (2010) note that a large cross-

section of assets becomes more manageable if estimation is carried out in two steps. To

our knowledge of current literature, no other work exists on large-dimensional GARCH-M

models.

In this paper, we examine the InCAPM coupled with a multivariate GARCH-M model

involving stock indices of 24 countries (all with developed financial markets) and 4 major

currencies, and we carry out the estimation in one step. In order to make one-step estimation

faster, we use analytical log-likelihood derivatives. Our one-step analysis is motivated by

simulations in which we compare the one-step estimator and the two-step estimators of Bali

and Engle (2010). The latter come in two variants, depending on whether the stage-two

SUR panel regression is estimated using unweighted or weighted least squares. Our Monte

Carlo analysis reveals that the unweighted estimator tends to underestimate the risk-return

coefficient. The bias can be interpreted as errors-in-variables bias, arising from the step-

two regressors being generated and, therefore, subject to error. The corresponding standard

errors, ignoring that the regressors are generated, are also too small. The weighted two-step

estimation variant reduces both problems, but only less than half of the way. The one-step

estimates, although not perfect, are found to be much less biased and deliver approximately

correct standard errors. Finally, our simulations demonstrate that the estimation of the

risk-return coefficient is greatly improved by increasing the cross-section dimension.

In the data we find a positive trade-off between market risk and return. In line with the

simulation evidence, the one-step estimate is bigger (around 6) than the two-step estimates

(around 3 to 4). Additionally, we detect a significant price of currency risk with some of

the larger currencies, like the euro and the British pound. Inconsistently with the static

model, though, the premium for the British pound is positive; and while the premium for

the euro is negative, it is too large in magnitude to make sense as wj(1− θj). So if this is

to be compatible with an InCAPM at all, it must reflect that currencies additionally act as

state variables, with a rising British pound being associated with a deteriorating investment

opportunity set that necessitates a risk premium, and vice versa for the euro.

The paper is organized as follows. Section 2 presents some testable hypotheses about

the asset pricing models we consider (the InCAPM and variants thereof). One-step and

two-step estimation of multivariate GARCH-M models is discussed in Section 3. Section 4

studies their performances in simulations and examines the effect of increasing the cross-

section dimension. Section 5 presents the empirical results. Section 6 concludes.

2 Asset pricing models

Following standard practice, we assume that the conditional InCAPM has no additional

state variables relative to the static Solnik-Sercu model or that the additional state variables

are orthogonal to the market and currency factors, so that they can be omitted. The

exchange rates may or may not act as state variables, and the return expectations and

covariances change over time.

Let nc denote the number of countries considered and ne < nc−1 the number of bilateral

exchange rates vis-à-vis an arbitrarily chosen home country. Let rt be the vector of excess

returns in period t, with n = nc +ne +1 elements arranged as follows. The first nc elements
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are the excess returns on the market portfolios in the nc countries.1 The next nf = ne + 1

elements are returns on assets that also act as priced factors: the ne excess returns on

short-term deposits denominated in local currencies and measured in U.S. dollars, and the

excess return on the world portfolio of all traded stocks.

The general InCAPM equilibrium equation is

rt = ω +Ht LB + εt, Et−1(εt) = 0, Vart−1(εt) = Ht, (1)

where Et−1(·) and Vart−1(·) denote conditional moments formed in period t − 1; ω is a

vector of intercepts (predicted by the model to be zero); Ht is the matrix of conditional

variances and covariances among all returns in rt; L = (0nf×nc : Inf
)′, so that Ht L is the

matrix of covariances between rt and the nf potentially priced factors (ne exchange rates

and the world market); and B = (B1, . . . , Bne , Bm)′, where B1, . . . , Bne are the currency risk

prices and Bm is the market risk price. In the InCAPM logic, Bm is the wealth-weighted

harmonic mean of the countries’ relative risk aversions. That is, if all risk aversions are

equal, Bm = θ; otherwise, the price of market risk is Bm =
(∑nc

c=1wcθ
−1
c

)−1
, where θc is

the relative risk aversion coefficient of investors from country c and wc is country c’s share

in the world’s total invested wealth, i.e., wc = Wc/
∑nc

c=1Wc, with Wc representing country

c’s invested wealth. In the static model, the price of risk of holding deposits denominated

in the currency of country c is Bc = wcBm(θ−1c − 1).

In any CAPM, the vector of intercepts, ω, should be equal to zero (i.e., there should

be no pricing errors). Whether to include ω in the regressions is a recurrent issue in the

literature on risk-return relation tests. Several authors point out that if the CAPM holds,

it is likely to uncover statistically significant prices of risk if ω is excluded; see, e.g., Lanne

and Saikkonen (2006) and Guo and Neely (2008). In case there are pricing errors, however,

excluding ω typically leads to biased estimates of B and incorrect testing results. Therefore

we include ω in the InCAPM and variants thereof, and test for non-zero pricing errors.

In our empirical study we include 24 countries and 4 major currencies: the Japanese

yen, the British pound, the euro and the U.S. dollar. Not including more currencies may

introduce omitted-variable bias in the estimates, but the bias is likely to economically neg-

ligible because a large portion of invested wealth is denominated in one of these currencies;

the other countries have wealth weights of a most a few percent, which makes their price

of risk almost undetectable. Switzerland, for instance, represents a market of less than

one-tenth the size of the U.S. market.2

The last asset in rt is the world market of stocks. If all countries in the world were

included, this could be problematic: the world portfolio is a linear combination of these

markets, so conditionally on a set of weights, the covariance matrix of the returns on the

country portfolios and the world portfolio would be singular in each period. However, in

practice it is simply infeasible to include all national markets in the first place, and while in

our study the omitted markets represent only a small fraction of world capitalization, the

1It is acceptable to work with country portfolios, at least in a static setting, as the model predicts that
stocks are held in proportion to an internationally common ‘fund’, the portfolio held by a log-utility investor.
As everyone should hold the world market portfolio of stocks, nothing is gained by introducing individual
share returns.

2We use market capitalization as a rough proxy for invested wealth. Alternative data like in the IMF’s
comprehensive portfolio survey make no distinction between amounts invested by (or on behalf of) Swiss
residents versus capital managed in Switzerland for non-residents.
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weights of the national portfolios in the world index still vary over time. In short, there is

always some extra information in the world market index.

In addition to the general InCAPM in equation (1), we also investigate two variants:

the one-factor/one-world CAPM and a version with zero slopes in the equations for the

currencies. The CAPM is the familiar equilibrium model between financial risk and return

in which currency risk is absent or at least not priced:

rt = ω +Ht LBm + εt, Et−1(εt) = 0, Vart−1(εt) = Ht, (2)

where rt is now a vector with n = nc + 1 elements (i.e., without the returns on foreign

deposits) and L = (01×nc : 1)′. The second variant, which we label InCAPMC, is a departure

from the InCAPM logic rather than a special case. In the standard InCAPM, equity and

currency markets are assumed to be fully integrated, so in the equations for stocks and

currencies there is a common set of prices B1, . . . , Bne and Bm ruling all expected returns.

In practice, however, currency traders take positions that are short-lived relative to what

happens in stocks; they act more like day traders than portfolio managers. In addition,

they tend to deal in a single currency or at most a few closely related ones, and work

independently from the equity desks and the other currency desks. Therefore, we also

examine a model where the set of risks is considered in the equity markets only, while in the

equations for currencies the slopes on all risk factors are set to zero. So this model specifies

rt = ω +W Ht LB + εt, Et−1(εt) = 0, Vart−1(εt) = Ht, (3)

which is identical to (1) except for the presence of W , a diagonal matrix with the elements

of (11×nc : 01×ne : 1) along the diagonal, which wipes out the risk factors for the returns on

currencies.

3 Multivariate GARCH-in-mean

Since the matrix Ht is not directly observable, estimating any of the models (1)–(3) requires

a specification of how Ht evolves over time. Following Bollerslev et al. (1988) and many

others, we adopt a multivariate GARCH-in-mean approach. We use the specification

Ht = H − (aa′ + bb′)�H + aa′ � εt−1ε′t−1 + bb′ �Ht−1, (4)

where H = E(εtε
′
t) is the unconditional variance matrix of the errors, a and b are parameter

vectors, and � denotes the Hadamard product.

To reduce the number of parameters to be estimated simultaneously, we estimate H

as the sample variance matrix of rt. In principle, one should iterate back and forth until

convergence between estimatingH as the sample variance matrix of ε̂t, the vector of residuals

for a given estimate of θ = (ω′, B′, a′, b′)′, and estimating θ for a given estimate of H. We

experimented with the iterative procedure using simulated and empirical data and found

that it gives almost the same estimate of H as the sample variance matrix of rt. Therefore

we settle for the latter, which speeds up the computation time.

Given an estimate of H, the remaining parameter, θ, can be estimated by maximizing

the Gaussian quasi log-likelihood function, which is (up to an inessential constant)

l = −1

2

T∑
t=1

(log |Ht|+ ε′tH
−1
t εt), (5)
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given the observed excess returns r1, . . . , rT .

To ensure stationary and positive definiteness of Ht, all elements of aa′ + bb′ must be

smaller than 1 in modulus. We impose this constraint by writing ai and bi in polar form

ai = ri cosϑi, bi = ri sinϑi,

with ri ∈ [0, 1) and θ ∈ [0, π/2). Then a2i + b2i = r2i < 1 and

|aiaj + bibj | = |ri cosϑirj cosϑj + ri sinϑirj sinϑj | = |rirj cos(ϑi − ϑj)| < 1,

satisfying the constraint automatically.

3.1 One-step estimation

One-step estimation of θ proceeds by maximizing l. The one-step estimator is consistent

and asymptotically normal provided that the estimator of R is consistent and the first

two moments of rt are correctly specified (Bollerslev and Wooldridge 1992). To make the

maximization reasonably fast and stable, we use a quasi-Newton method with analytical

derivative ∂l/∂θ, which we now derive. The derivation parallels that in Lucchetti (2002)

for the BEKK model.

Consider the model defined by (1) and (4). The differential of εt follows from (1) as

dεt = −(B′L′ ⊗ In)dht − dω −HtLdB, (6)

where ht = vecHt. The log-likelihood summand is

lt = −1
2(log |Ht|+ ε′tH

−1
t εt),

with differential

dlt = 1
2(u′t ⊗ u′t − p′t)dht − u′tdεt

= W ′tdht +Q′tdθ (7)

where ut = H−1t εt, pt = vecH−1t , and

Wt = vecutB
′L′ + 1

2(vecutu
′
t − pt),

Qt = (u′t : u′tHtL : 01×n : 01×n)′.

Further,

dht = dvec(aa′)� (vec(εt−1ε
′
t−1)− h) + vec(aa′)� dvec(εt−1ε

′
t−1)

+ dvec(bb′)� (ht−1 − h) + vec(bb′)� dht−1,

where h = vecH. Since dvec(aa′) = Q(a)da with Q(a) = a ⊗ In + In ⊗ a, we can rewrite

dht as

dht = (εt−1 ⊗ εt−1 − h)�Q(a)da+ (a⊗ a)�Q(εt−1)dεt−1

+ (ht−1 − h)�Q(b)db+ (b⊗ b)� dht−1.

Using (6), we obtain the recursion

dht = Ftdθ +Gtdht−1
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where

Ft = (M1t : M2t : M3t : M4t),

Gt = diag(b⊗ b) +B′L′ ⊗M1t,

M1t = −(a⊗ a⊗ ι′n)�Q(et−1),

M2t = M1tHt−1L,

M3t = ((et−1 ⊗ et−1 − h)⊗ ι′n)�Q(a),

M4t = ((ht−1 − h)⊗ ι′n)�Q(b)

and ιn is an n× 1 vector of ones. Therefore,

dht = Jtdθ

where Jt is recursively defined as

J0 = 0, Jt = Ft +GtJt−1.

From (7), we obtain dlt = (W ′tJt +Q′t)dθ and the required derivative follows as

∂l

∂θ
=

T∑
t=1

(J ′tWt +Qt).

For the other models ∂l/∂θ is obtained using the formulas above with minor modification.

3.2 Two-step estimation

In view of the difficulty of estimating multivariate GARCH-M models in one step, Bali and

Engle (2010) proposed a two-step estimation procedure. The method is based on the DCC

model of Engle (2002) instead of (4). In the first step, the conditional variance matrices,

Ht, are estimated with a bivariate DCC model fitted to each pair of returns, ignoring that

the expected returns are time-varying. In the second step, the expected return equation is

estimated as a panel with the estimated conditional variance matrices, Ĥt, as regressors,

assuming a seemingly unrelated regression (SUR) error structure. As an alternative, they

also suggested to use weighted least squares in the second step, dividing each equation by

its estimated conditional standard deviation prior to estimating the panel by SUR. We refer

to this as weighted two-step estimation.

In our setting, with (4) instead of the DCC specification of Ht, the first step consists

of estimating a and b in (4) directly from the demeaned returns, i.e., assuming Et−1[(rt −
E(rt))(rt−E(rt))

′] = Ht. This gives Ĥt and D̂t = (In�Ĥt)
1/2, the diagonal matrix with the

estimated conditional standard deviations of the returns on its diagonal. Now, considering

(1), write the expected return equation as

rt = Xtϑ+ εt, Xt = (In : HtL), ϑ = (ω′ : B′)′,

and let X̂t = (In : ĤtL). The unweighted two-step estimator of ϑ is

ϑ̂u =
(∑

t
X̂ ′tΣ̂

−1X̂t

)−1∑
t
X̂ ′tΣ̂

−1rt,
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where Σ̂ = T−1
∑

t ε̂t(ϑ̂u)ε̂t(ϑ̂u)′ and ε̂t(ϑ) = rt −Xtϑ. The weighted two-step estimator is

ϑ̂w =
(∑

t
X̂ ′tD̂

−1
t R̂−1D̂−1t X̂t

)−1∑
t
X̂ ′tD̂

−1
t R̂−1D̂−1t rt,

where R̂ = T−1
∑

t D̂
−1
t ε̂t(ϑ̂w)ε̂t(ϑ̂w)′D̂−1t .

The two-step estimators are subject to errors-in-variables bias. Write X̂t = Xt + ζt,

where ζt arises from the difference between Ĥt and Ht. Then, as T →∞,

plimϑ̂u = ϑ+A−1b

where

A = plimT−1
∑

t
X̂ ′tΣ̂

−1X̂t,

b = plimT−1
∑

t
X̂ ′tΣ̂

−1(εt − ζtϑ).

If ζt vanishes as T →∞, we have b = 0. But since the first-step estimation ignores the time-

varying mean of rt, in general ζt does not vanish asymptotically, and neither does b. Hence,

ϑ̂u is expected to be asymptotically biased, and similarly for ϑ̂w and the corresponding

two-step estimators in the other models (CAPM and InCAPMC, in conjunction with (4)).

The simulations reported in the next section examine the magnitude of the bias.

4 Simulations

In this section, we compare the performance of the three estimation methods discussed:

one-step, unweighted two-step, and weighted two-step estimation. We also examine the

effect of the cross-sectional dimension, n, on the performance of the estimators; the quality

of the standard errors; and the rejection rates of the Wald test of zero pricing errors.

We generated excess returns r1, . . . , rT for T = 1000 periods, corresponding to around

19 years of weekly returns, according to the one-factor CAPM model

rt = ω +Ht LBm + εt, εt ∼ N(0, Ht),

Ht = H − (aa′ + bb′)�H + aa′ � εt−1ε′t−1 + bb′ �Ht−1,

with L = (01×(n−1) : 1)′, Bm = 3, ω = 0n×1, a = 0.15ιn, b = 0.98ιn, and H equal to

the sample variance matrix of the weekly return data studied further in the next section.

We varied the number of assets as n = 1, 5, 14, 25. For n = 1 the world index is the sole

asset. For n = 5 we add the stock indices of Germany, Japan, the U.K., and the U.S.;

for n = 14 we add nine more indices with market weights exceeding 1% in market capi-

talization, namely Australia, Canada, France, Hong Kong, Italy, The Netherlands, Spain,

Sweden, and Switzerland; and, lastly, for n = 25 we further add the eleven indices for the

other developed markets, Austria, Belgium, Denmark, Finland, Greece, Ireland, Israel, New

Zealand, Norway, Portugal, and Singapore, giving 24 countries in total.

We set the number of Monte Carlo replications equal to 200, given that one-step esti-

mation is still time-consuming when n is large (currently around one hour per replication

when n = 25). The parameters to be estimated are R and θ = (ω′, Bm, a
′, b′)′. The main

parameter of interest is Bm, the coefficient of relative risk aversion. This parameter plays a



The risk-return tradeoff in the international stock markets 8

key role in financial economics, but estimation has proved to be rather elusive, with wildly

diverging estimates. Our simulations seek to shed light on this issue.

We first present Monte Carlo results relating to the distribution of B̂m, the estimator of

Bm. Table 1 gives the mean, median, and other quantiles, and Figure 1 shows its frequency

distribution, with the bins being centered at the odd integers.

Table 1: Distribution of B̂m when Bm = 3

quantiles

n method mean minimum 0.25 median 0.75 maximum

25 1step 3.7000 −8.3801 1.2796 3.7514 5.8112 12.7090
25 2step 1.0479 −7.0628 −0.1228 0.8224 2.1623 9.4162
25 w2step 1.4298 −6.8984 −0.1641 1.2375 2.9917 8.8357

14 1step 3.4948 −6.8378 1.0531 3.2433 6.1393 15.9022
14 2step 1.0179 −4.0555 −0.3419 0.8447 2.2492 7.2790
14 2step 1.3931 −5.5461 −0.3703 1.4423 2.9081 8.3919

5 1step 2.9813 −11.3930 −0.6071 2.9848 6.7386 22.3852
5 2step 1.2739 −14.0426 −0.8928 1.2181 3.8376 11.9378
5 w2step 1.5711 −14.8448 −0.7631 1.4538 4.7184 13.4167

1 1step −28.7639 −4852, 38 −4.0484 3.5987 9.8994 3893, 561
1 2step 3.5874 −1015, 63 −3.3113 3.1172 9.8810 758, 7478
1 w2step 3.6628 −1018, 41 −2.6869 3.2494 9.9554 761, 0504

Note: 200 Monte Carlo replications.

When n = 25, the distribution of the one-step estimate (in blue in Figure 1) is reason-

ably well centered around the true value; its mean and median are 3.70 and 3.75, and its

standard deviation is 3.44 (see Table 2). The unweighted two-step estimates, in contrast,

are systematically lower, with a mean and median of 1.05 and 0.82, and the distribution (in

red in Figure 1) peaks at unity. The attenuation bias, of course, was to be expected given

that the regressor Ĥt is measured with noise. The noisier Ĥt, the more bias is introduced

in B̂m. If the noise is proportional to Ht (or, at least, correlates positively with Ht), one

would expect the weighted two-step estimator, which downweights observations with large

Ĥt, to reduce the bias. The simulations suggest that this is indeed the case. The mean and

median of the weighted two-step estimator are 1.43 and 1.24. Although an improvement on

the unweighted estimator, the bias is still large.

Given that the slope coefficient, Bm, is identical for all n assets and this is imposed

in the estimation, expanding the set of assets increases the statistical information on Bm,

which must benefit the estimators. The simulations results manifestly confirm this. When

n = 1, all estimates are very poor and the log-likelihood function is extremely flat. Thus,

there is very little information about Bm contained in data on the world index only, in

line with the findings of Lundblad (2007), who used the U.S. index as the sole index. As

n increases to 5, 14, and 25, all estimators considerably improve, as Table 1 and Figure 1

unambiguously show. The simulations nevertheless suggest that, even with nearly twenty

years of index data from all developed markets and the world index, it remains very difficult

to empirically pin down the relative risk aversion coefficient.
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Figure 1: Distribution of B̂m when Bm = 3
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Note: 200 Monte Carlo replications.

Apart from the coefficient estimates B̂m themselves, we also examine the reliability of the

standard errors, se(B̂m), computed from the Hessian of the log-likelihood for the one-step

estimator and from the SUR procedure for the two-step estimators. Theoretically, neither

of these standard errors is fully correct; for the one-step estimator the effect of setting H

equal to the sample variance of rt is ignored, while for the two-step estimators the effect of

the first step is ignored. Therefore, one may expect the standard errors to underestimate

the true standard deviation of the estimates, given as std(B̂m) in Table 2.

The average se(B̂m) across the simulations, one hopes, is close to std(B̂m). Table 2

summarizes the distribution of se(B̂m). When n = 25, the average values of se(B̂m) are

3.24, 1.46, and 1.98 for the one-step, unweighted two-step, and weighted two-step estimates,

with corresponding values of std(B̂m) equal to 3.44, 1.91, and 2.46. Thus, all standard errors

are too small on average. The distortion is mild for the one-step estimator (around 6%),

while it is bigger for the two-step estimators (around 25%). We also note that the relative

distortion of the standard errors tends to slightly increase with n.
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Table 3 reports the mean of ω̂. Except for n = 1, the one-step estimator tends to

slightly underestimate ω, but its mean still remains very close to the true value, ω = 0. The

two-step estimates, in contrast, tend to substantially overestimate ω, with estimated values

on average around 0.1 for the unweighted estimator and slightly higher for the weighted

estimator.

Finally, we examine the properties of the Wald test of the null hypothesis of no pricing

errors, i.e., H0 : ω = 0. The asymptotic distribution of the Wald statistic under H0 is

χ2
n provided that ω̂ is consistent, asymptotically normal, and its variance matrix estimate

is consistent. Biases in ω̂ or its estimated variance generally lead to deviations from the

asymptotic distribution, which show up as non-uniformly distributed asymptotic p-values

(i.e., computed from the χ2
n as the reference distribution) under H0. We computed the

Wald statistics and their asymptotic p-values. Figure 2 presents the results in the form of

p-value discrepancy plots (Davidson and MacKinnon 1998), which graph the level error of a

test against its nominal level. Deviations from the zero line indicate level errors of the test:

the test overrejects (or underrejects) at a given nominal level, given on the horizontal axis,

when the ordinate of the p-value discrepancy plot is positive (or negative). Overall, we find

that the level distortions of the Wald test are relatively mild: for nominal levels between

0 and 0.3, they are almost always less than 0.1 in magnitude, regardless of n and of the

estimator considered. For the two-step estimators there is some underrejection for n ≥ 5.
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Figure 2: p-value discrepancy plots of Wald statistics of H0 : ω = 0
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Notes: 200 Monte Carlo replications; horizontal axis: nominal level; vertical axis: level error.

5 Empirical results

5.1 Data

We use weekly and daily returns on MSCI stock indices for 24 markets and an MSCI value-

weighted world index. The markets are Australia, Austria, Belgium, Canada, Denmark,

Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, the Nether-

lands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United

Kingdom, and the United States. Datastream provides two types of return indices: the price

index (MSPI) and the total return index including dividends (MSRI). We use the MSRI

indices from January 1, 2001 to February 27, 2015. It may be remarked that the MSCI

world portfolio, as a proxy of the market portfolio, is biased towards larger stocks, but it

is equally true that foreign shareholders are similarly focusing on bigger stocks, with better

liquidity, more analyst following, and less of an information disadvantage vis-à-vis local in-

vestors. For the risk-free rate we take the 3-month U.S. T-Bill yield, labelled TRUS3MT in

Datastream. We consider 4 currencies: the Japanese yen, the British pound, the euro and

the U.S. dollar. Their Libor deposit rates are collected and returns are computed. To get
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closer to the national T-Bill rates, we then subtract the TED spread from all Libor rates.

All returns are measured in U.S. dollars, so we have currency risks relative to the Japanese

yen, the British pound, and the euro. Summarizing, we obtain returns on 28 assets: 24

stock indices, 1 world stock index, and 3 currencies.

5.2 Results

Table 4 presents the one-step estimates of the InCAPM based on daily returns. We find a

statistically significant estimate of the market risk coefficient, Bm with a point estimate of

6.03 with a standard error of 2.01. In contrast, the estimates of the currency risk coefficients

are statistically insignificant.

The estimates of B in the InCAPM, InCAPMC, and CAPM with daily returns are

given in Table 5. The one-step estimates of Bm are found to be reasonably robust across

models, being 6.63 and 3.71 in the InCAPMC and CAPM, again statistically significant.

The two-step estimates of Bm, on the other hand, are disappointing: except for one instance

they are all negative, although often statistically insignificant. The estimated currency risk

coefficients are, as expected, negative most of the time, but they generally lack statistical

accuracy. Some of these estimates are positive, suggesting that the currencies may pick up

omitted state variables. This is line with the results of the Wald tests, which in all cases

reject the hypothesis of no pricing errors.

Table 6 presents the estimates of B for the weekly return data. We find one-step

estimates of Bm equal to 5.68, 5.37, and 5.54 in the InCAPM, InCAPMC, and CAPM.

The statistical significance is lower than in the daily data, although the estimates remain

significant at the 5% level in one-tailed tests. The two-step estimates of Bm are all positive

now, but they are statistically insignificant and much lower than the one-step estimates.

This is very much in line with the simulation findings discussed earlier, which were set up

to mimic weekly data. A further observation is that now there is a clearer pattern for the

currency risk coefficients. The estimates of BEUR are all negative and those of BGBP are

all positive. According to the one-step estimates of the InCAPM and InCAPMC, BEUR

and BGBP are both statistically significant. Regarding the Wald tests, the conclusion is the

same as with the daily data: the joint hypothesis of zero pricing errors is rejected in all

models by all estimates.
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5.3 Results for models with fewer markets

De Santis and Gerard (1998) estimated a multivariate GARCH-M model using the stock

indices and currencies of the 4 largest markets (Germany, Japan, the United Kingdom,

and the United States), giving eight assets in total. We also estimated the models for

this smaller set of countries; Tables 7 and 8 present the estimates of B using daily and

weekly data. The results are broadly in line with those of the model with 28 assets. With

daily returns, the one-step estimates of Bm are between 4.30 and 6.62; with weekly returns

they are larger, all around 7.5; their statistical significance levels remain about the same as

earlier. The two-step estimates of Bm remain troublesome, often being negative (for daily

data) or statistically insignificant. As expected, the estimates of the currency risks remain

inaccurate, even more so than before. Interestingly, the null hypothesis of no pricing errors

is no longer rejected; the ensemble of p-values in Tables 7 and 8 does not give any indication

of pricing errors.

Further, we estimated a system with the thirteen big and mid-sized markets whose

market value is larger than 1% of the world total market value (’world’ means the 24

countries with developed financial markets).3 Tables 9 and 10 report the estimates of B,

with results that are in line with the earlier ones, roughly between those with 4 and with

24 markets. The additional point of interest is that the Wald test now almost universally

rejects (except for the weighted two-step estimator with daily data), suggesting that the

mispricing concerns the mid-sized markets.

6 Conclusions

In this paper we study a conditional version of three global asset pricing models. In the

InCAPM, currency risk is priced; in the CAPM it is absent; and in the InCAPMC it is taking

into consideration only in the stock markets. Our empirical methodology is a GARCH-M

framework, where we introduce a one-step estimation approach as an alternative to the

two-step method of Bali and Engle (2010).

Using Monte Carlo simulations, we first investigate the performance of alternative esti-

mation methods. The simulations reveal that two-step estimation tends to underestimate

the risk-return coefficient; even though the bias of the weighted two-step method is less pro-

nounced, it remains substantial. We then study the influence of the cross-section dimension

and find that the estimate of the (single) price of risk considerably improves if more asset

price series are used.

In the empirical part, we use weekly and daily data from 2001 to 2015 for up to 24 stock

indices, a world index, and 4 currencies. We find statistically significant one-step estimates

of the price of market risk of around 6. The estimate is relatively robust with respect to

the model specification, data frequency, and the number of assets employed. The weighted

two-step estimates, on the other hand, are around 2 for weekly returns but very messy for

daily returns, while the unweighted two-step estimates are often between 0 and 1 for weekly

returns but negative for daily returns. Regarding the prices of currency risk, the standard

errors of the estimates are too large to draw meaningful conclusions.

3These thirteen markets are: Australia, Canada, France, Germany, Hong Kong, Italy, Japan, The Nether-
lands, Spain, Sweden, Switzerland, the United Kingdom, and the United States.
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Table 2: Distribution of the standard errors of B̂m

quantiles

n method mean minimum 0.25 median 0.75 maximum std(B̂m)

25 1step 3.2474 2.0175 3.0063 3.2264 3.4173 7.8669 3.4444
25 2step 1.4616 0.6431 1.1657 1.4673 1.7320 2.3594 1.9064
25 w2step 1.9777 1.3902 1.7688 1.9676 2.1542 2.7750 2.4640

14 1step 3.8538 2.8106 3.5715 3.8008 4.1233 5.4912 3.9634
14 2step 1.7721 0.5202 1.4393 1.7108 2.1299 2.7929 2.0532
14 w2step 2.3766 1.2043 2.1107 2.3339 2.6333 3.4148 2.6684

5 1step 6.0858 3.1915 5.0802 5.7073 6.4615 55.6687 5.7942
5 2step 3.7504 1.6619 2.9822 3.6625 4.3456 9.6311 3.9756
5 w2step 4.1272 2.3078 3.3802 4.0667 4.6614 9.6091 4.2107

1 1step 10520 4.2459 7.6133 10.9098 17.2494 1976996 583.2198
1 2step 27.3892 3.9337 6.8871 9.1996 13.5883 1134.0073 110.6516
1 w2step 27.7851 4.1006 7.2746 9.5479 14.4940 1139.6343 110.8959

Note: 200 Monte Carlo replications.
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Table 3: Mean of ω̂ when ω = 0

n = 25 n = 14

1step w2step 2step 1step w2step 2step

−0.0380 0.1004 0.1211 −0.0353 0.1032 0.1209
−0.0458 0.1161 0.1400 −0.0326 0.1088 0.1261
−0.0382 0.1111 0.1326 −0.0397 0.1264 0.1478
−0.0307 0.1142 0.1327 −0.0397 0.1314 0.1547
−0.0328 0.0915 0.1105 −0.0251 0.0824 0.0953
−0.0360 0.1425 0.1680 −0.0360 0.1222 0.1435
−0.0436 0.1203 0.1443 −0.0196 0.0718 0.0819
−0.0479 0.1234 0.1483 −0.0360 0.1241 0.1458
−0.0495 0.1098 0.1316 −0.0357 0.1249 0.1447
−0.0296 0.0797 0.0951 −0.0392 0.1448 0.1712
−0.0452 0.1141 0.1360 −0.0295 0.0863 0.1014
−0.0295 0.0600 0.0737 −0.0343 0.1048 0.1227
−0.0444 0.1154 0.1395 −0.0292 0.0937 0.1090
−0.0253 0.0668 0.0789 −0.0305 0.0984 0.1148
−0.0423 0.1148 0.1384
−0.0260 0.0660 0.0795 n = 5

−0.0421 0.1301 0.1560 1step w2step 2step

−0.0329 0.0860 0.1024 −0.0118 0.1054 0.1273
−0.0311 0.0838 0.1015 0.0023 0.0630 0.0764
−0.0439 0.1153 0.1380 −0.0140 0.0794 0.0969
−0.0464 0.1376 0.1642 −0.0071 0.0750 0.0903
−0.0323 0.0829 0.1000 −0.0076 0.0790 0.0954
−0.0311 0.1036 0.1241 n = 1

−0.0248 0.1000 0.1164 1step w2step 2step

−0.0294 0.1001 0.1181 1.7392 −0.0004 0.0033

Note: 200 Monte Carlo replications.
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Table 4: One-step estimates of InCAPM with 24 markets and daily returns

market/currency 100× ω B a b

Australia 0.0642 – 0.1102 0.9925
Austria 0.0771 – 0.1158 0.9914
Belgium 0.0802 – 0.1196 0.9914
Canada 0.0412 – 0.1200 0.9917
Denmark 0.0911 – 0.1051 0.9925
Finland 0.0767 – 0.1148 0.9923
France 0.0681 – 0.1216 0.9914
Germany 0.0829 – 0.1172 0.9918
Greece 0.0600 – 0.1115 0.9926
Hong Kong 0.0442 – 0.0939 0.9944
Ireland 0.0738 – 0.1196 0.9910
Israel 0.0412 – 0.0840 0.9949
Italy 0.0563 – 0.1246 0.9911
Japan 0.0209 – 0.1205 0.9915
Netherlands 0.0674 – 0.1214 0.9914
New Zealand 0.0691 – 0.0901 0.9946
Norway 0.0845 – 0.1130 0.9918
Portugal 0.0611 – 0.1158 0.9915
Singapore 0.0528 – 0.1001 0.9937
Spain 0.0849 – 0.1245 0.9911
Sweden 0.0831 – 0.1168 0.9917
Switzerland 0.0630 – 0.1175 0.9915
U.K. 0.0592 – 0.1217 0.9914
U.S. 0.0274 – 0.1179 0.9920
world 0.0379 6.0279 (2.0126) 0.1177 0.9919
GBP 0.0284 −4.9149 (6.8891) 0.1061 0.9923
JPY −0.0123 3.1290 (5.3176) 0.0939 0.9932
EUR 0.0256 −5.3178 (6.3408) 0.1006 0.9930

Note: Standard errors in parentheses.
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Table 5: Estimates with 24 markets and daily returns

Model Method Bm BGBP BJPY BEUR Wald

InCAPM 1step 6.0279 −4.9149 3.1290 −5.3178 193.5383
(2.0126) (6.8891) (5.3176) (6.3408) (0.0000)

InCAPM 2step −1.6974 −4.4754 −1.8823 1.8286 68.4450
(0.5512) (2.8229) (1.9065) (2.6365) (0.0000)

InCAPM w2step −0.5740 −7.2953 −0.2349 7.3900 42.5344
(1.5298) (4.6941) (2.9226) (4.0286) (0.0386)

InCAPMC 1step 6.6347 2.8058 2.1080 −10.8995 177.9743
(1.8954) (6.0092) (4.9143) (5.2565) (0.0000)

InCAPMC 2step −1.8546 −3.2544 −0.1238 2.3588 66.2307
(0.5644) (3.2832) (2.0804) (2.9209) (0.0000)

InCAPMC w2step −0.0843 −4.5863 −0.4968 7.6417 34.9986
(1.6189) (5.8710) (3.4250) (4.7282) (0.0882)

CAPM 1step 3.7110 – – – 186.4721
(1.6622) – (0.0000)

CAPM 2step −1.9828 – – – 65.5100
(0.4407) – (0.0000)

CAPM w2step 0.0826 – 40.3409
(1.4730) – (0.0269)

Note: standard errors and p-values of Wald statistics of H0 : ω = 0 in parenthe-
ses.



The risk-return tradeoff in the international stock markets 19

Table 6: Estimates of with 24 markets and weekly returns

Model Method Bm BGBP BJPY BEUR Wald

InCAPM 1step 5.6784 34.7439 3.5496 −48.9575 76.2772
(3.2498) (11.9776) (13.4101) (14.5455) (0.0000)

InCAPM 2step 0.5804 4.3702 −1.2326 −3.6058 63.3403
(0.4623) (2.4858) (1.3970) (2.4510) (0.0001)

InCAPM w2step 1.4966 4.7546 0.4171 −0.9247 42.5480
(1.4375) (4.2593) (2.7829) (3.8325) (0.0385)

InCAPMC 1step 5.3719 19.3104 1.5597 −28.3461 68.4601
(2.9974) (8.8497) (10.8064) (11.3079) (0.0000)

InCAPMC 2step 0.4569 7.5601 0.0725 −4.8428 61.5084
(0.4753) (2.7215) (1.4803) (2.6519) (0.0001)

InCAPMC w2step 1.4698 10.8167 0.5750 −2.2470 38.1254
(1.5380) (4.9246) (3.1677) (4.3024) (0.0450)

CAPM 1step 5.5373 – – – 62.6912
(2.7200) – – (0.0000)

CAPM 2step 0.8125 – – – 66.8579
(0.3539) – – (0.0000)

CAPM w2step 2.4469 – – – 38.9244
(1.4299) – – (0.0375)

Note: standard errors and p-values of Wald statistics of H0 : ω = 0 in parenthe-
ses.
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Table 7: Estimates with 4 largest markets and daily returns

Model Method Bm BGBP BJPY BEUR Wald

InCAPM 1step 4.2998 1.1183 2.1123 −2.4323 9.1390
(2.2841) (6.9079) (5.2115) (6.3734) (0.3307)

InCAPM 2step −1.6965 −1.7188 −1.8239 −3.4306 10.6798
(0.9287) (3.7830) (3.1594) (3.8842) (0.2205)

InCAPM w2step −0.4435 −2.6970 1.8501 3.3499 7.4082
(1.9106) (5.8194) (3.9579) (5.3298) (0.4933)

InCAPMC 1step 6.6226 9.7857 7.3606 −14.4120 4.0890
(2.1827) (6.7355) (5.3449) (6.2393) (0.5367)

InCAPMC 2step −1.6814 6.8044 5.1258 −6.5574 5.6501
(1.0644) (5.5139) (4.6715) (5.0350) (0.3418)

InCAPMC w2step 1.4165 9.7373 4.2443 −4.9674 3.0163
(2.2507) (9.0739) (5.8389) (8.1705) (0.6975)

CAPM 1step 4.7013 – – – 4.3417
(1.9875) – – (0.5013)

CAPM 2step −2.2769 – – – 6.9453
(0.7944) – – (0.2247)

CAPM w2step 1.6937 – – – 2.1779
(1.9394) – – (0.8240)

Note: standard errors and p-values of Wald statistics of H0 : ω = 0 in parenthe-
ses.
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Table 8: Estimates with 4 largest markets and weekly returns

Model Method Bm BGBP BJPY BEUR Wald

InCAPM 1step 7.7995 6.7543 1.8839 −10.9354 3.3388
(3.0952) (7.5157) (9.8743) (7.7379) (0.9113)

InCAPM 2step 0.6586 1.6950 −2.0218 −5.2836 3.7595
(0.9805) (3.9356) (2.9617) (4.4226) (0.8781)

InCAPM w2step 2.7113 3.3217 2.4529 −2.7238 7.1877
(1.8528) (5.9192) (3.9746) (5.8155) (0.5165)

InCAPMC 1step 7.4657 4.9860 2.8066 −13.0634 3.4325
(2.9335) (6.6131) (9.2209) (7.6631) (0.6336)

InCAPMC 2step 0.7830 14.8634 2.2613 −13.5976 3.2700
(1.1811) (5.4984) (4.1783) (6.3972) (0.6584)

InCAPMC w2step 3.8298 19.7026 3.5315 −11.2005 9.4739
(2.2703) (8.6962) (5.4137) (8.8036) (0.0916)

CAPM 1step 7.4791 – – – 1.7668
(2.6489) – – (0.8804)

CAPM 2step 0.4549 – – – 1.2459
(0.8397) – – (0.9404)

CAPM w2step 4.5441 – – – 5.3746
(1.9303) – – (0.3719)

Note: standard errors and p-values of Wald statistics of H0 : ω = 0 in parenthe-
ses.
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Table 9: Estimates with 13 largest markets and daily returns

Model Method Bm BGBP BJPY BEUR Wald

InCAPM 1step 5.5713 −4.4294 2.5387 −0.2088 106.6071
(2.0358) (6.6694) (5.0734) (6.1046) (0.0000)

InCAPM 2step −2.4383 −2.9478 −0.3032 −0.2936 50.5968
(0.6133) (3.0563) (2.1400) (2.9329) (0.0000)

InCAPM w2step −0.2381 −5.6359 −0.0730 7.7509 16.8504
(1.6847) (5.0607) (3.2708) (4.4775) (0.4645)

InCAPMC 1step 6.2401 3.7631 1.0088 −8.7618 98.3932
(1.9330) (5.9839) (4.8205) (5.2631) (0.0000)

InCAPMC 2step −2.5995 −0.5071 2.3737 −0.5490 48.1041
(0.6322) (3.6648) (2.4067) (3.3330) (0.0000)

InCAPMC w2step 0.5938 −2.8310 −0.0559 9.1150 12.6590
(1.8388) (6.6316) (4.0316) (5.5782) (0.5535)

CAPM 1step 3.8142 – – – 104.2661
(1.6879) – – (0.0000)

CAPM 2step −3.0335 – – – 48.3004
(0.4941) – – (0.0000)

CAPM w2step 1.2544 – – – 13.7529
(1.6429) – – (0.4683)

Note: standard errors and p-values of Wald statistics of H0 : ω = 0 in parenthe-
ses.
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Table 10: Estimates with 13 largest markets and weekly returns

Model Method Bm BGBP BJPY BEUR Wald

InCAPM 1step 7.5610 11.5812 −8.3651 −21.3127 50.9423
(2.6873) (8.6785) (9.3296) (10.0557) (0.0000)

InCAPM 2step 0.6509 3.9356 −1.0667 −4.7916 41.5340
(0.5505) (2.9345) (1.6750) (2.9685) (0.0008)

InCAPM w2step 2.3634 3.8289 −1.5617 0.6090 29.2881
(1.6291) (4.9474) (3.1677) (4.6475) (0.0320)

InCAPMC 1step 6.4161 10.8182 −10.0414 −20.9968 49.2824
(2.5667) (6.8071) (8.1039) (8.0312) (0.0000)

InCAPMC 2step 0.4342 9.3475 0.3644 −8.1093 39.2431
(0.5754) (3.3639) (1.8295) (3.3763) (0.0003)

InCAPMC w2step 2.7464 13.4321 −1.8120 −2.6809 30.1362
(1.8383) (6.1261) (3.7729) (5.6594) (0.0073)

CAPM 1step 6.5042 – – – 42.6526
(2.2829) – – (0.0001)

CAPM 2step 0.5184 – – – 41.2750
(−0.0844) – – (0.0002)

CAPM w2step 4.3947 – – – 28.0531
(5.7561) – – (0.0140)

Note: standard errors and p-values of Wald statistics of H0 : ω = 0 in parenthe-
ses.
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