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over time. Furthermore, we allow for production delays of durable inputs. We
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1. Introduction

Many production decisions have long term consequences for production and are
capital-intensive: should a firm merely buy new machines to replace older ma-
chines that have reached (physical) end of life? Or should the firm invest in new
machines to expand its production capacity? These capital-intensive investments
are “durable” by nature, because they have a long term impact on production.
Furthermore, firms often buy far larger quantities of inputs then they currently
need. This can be economically rational for a number of reasons: there are dis-
counts on bulk purchases of inputs or firms expect input prices to rise in the near
future. These “storable” inputs can be stored in inventories and are used over
several time periods. These durable and storable inputs used in production limit
the flexibility of a firm in adjusting its input mix. In this paper, we introduce
a novel methodology for economic (cost) efficiency analysis that explicitly takes
these intertemporal aspects of firms’ production behavior into account. This ob-
tains a more realistic modeling of intertemporal relations in production situations
where storability and durability of inputs are relevant, which is often the case in
real-life settings.

1.1. Intertemporal efficiency and regulation. In regulated industries it is
particularly vital that the regulator takes intertemporal dependencies of produc-
tion into account in the regulation exercise. However, regulators generally do not
incorporate these interdependencies in practice. This is sometimes motivated by a
lack of panel data, which forces regulators to limit the analysis to cross-sectional
data (Pollitt, 2005). However, also the used definition of capital costs can be con-
tested (Haney and Pollitt, 2013; Shuttleworth, 2005). Clearly, not taking these
dependencies into account can lead to erroneous cost reduction targets. Shuttle-
worth (2005) reports a case where Ofgem, a UK electricity distribution regulator,
imposed a too strong target for one distributor (Seeboard) while imposing a too
loose target on another (Southern). This discrepancy was due to the fact that
Ofgem only considered operational expenses, while disregarding capital expenses.
And it happened that Southern was characterized by high capital expenses and
low operational expenses, while the opposite applied to Seeboard.

The relation between regulatory regime and investment has received a lot of
attention (see Guthrie (2006) for a discussion). Focusing on cross-sectional data
can lead to penalization of firms that invest while rewarding those that delay in-
vestments. Nick and Wetzel (2015) conclude that firms have an incentive to cut
investments when the regulator uses a static benchmarking model. Our empirical
application to Swiss railway companies will show that the resulting dynamic effi-
ciency conclusions may significantly differ from the ones that are based on a static
efficiency analysis. In our opinion, this directly motivates the practical relevance
of our methodology, as these differences may substantially affect the regulatory
policies that are based on the efficiency assessment.
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1.2. Efficiency analysis with durable and storable inputs. The existing
literature has devoted much attention to the analysis of dynamically efficient pro-
duction behavior from a technical perspective (see Fallah-Fini et al. (2013) for a
recent review). Such technical efficiency analysis then focuses, for example, on
the modeling of production delays, inventories, capital (quasi-fixed factors in gen-
eral), adjustment costs and learning. By contrast, far less work has tackled the
issue from an economic perspective.1 Importantly, however, the distinction be-
tween economic and technical efficiency analysis becomes particularly relevant in
dynamic decision settings.

For durable inputs, it has long been known that firms do not scrap old (durable)
capital equipment the moment new equipment becomes available. The process of
replacing capital equipment is rather gradual. Firms deciding on new capital
equipment face different substitution possibilities between inputs before (ex ante)
and after (ex post) the purchase: once capital equipment is installed, it remains
in use until the end of its predetermined lifetime (Forsund and Hjalmarsson, 1974;
Johansen, 1959). Thus, while firms might seem inefficient from a technical per-
spective, they may actually be efficient from an economic perspective.2

Similarly, when deciding upon storable inputs, firms typically plan their produc-
tion in advance for a certain time horizon. They form expectations on prices and
demand and then decide on the amount of necessary inputs to acquire. Clearly,
if prices of storable inputs vary over time, this can again generate significant dis-
crepancies between technical and economic efficiency analysis.

In this paper, we present a unifying framework to analyze intertemporal cost
minimizing behavior with both durable and storable inputs. For durable inputs,
our framework explicitly models the possibility that firms use several vintages:
they invest in new durables and scrap older durables over time. Furthermore, we
allow for production delays of durable inputs. We also show how our framework
can incorporate alternative hypotheses such as degressive write-off of durables over
time.

A main distinguishing feature of our methodology is that it is intrinsically non-
parametric (in the spirit of Afriat (1972); Banker and Maindiratta (1988); Varian
(1984)): it can analyze production behavior without imposing any (usually non-
verifiable) functional structure on the production technology. We characterize
production behavior that is intertemporal cost efficient, which allows us to evalu-
ate the efficiency of observed production decisions. For cost inefficient behavior,
we propose a measure that quantifies the degree of inefficiency. This intertempo-
ral inefficiency measure has the attractive property that it can be decomposed in
period-specific cost inefficiencies.

1Notable exceptions include Nemoto and Goto (1999, 2003); Ouellette and Yan (2008); Silva
and Stefanou (2003). We discuss the relation between our framework and this existing work in
Section 2.

2Wibe (2008) coined the term “rational inefficiency” to mark this difference.
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1.3. Outline. The remainder of this paper unfolds as follows. In Section 2, we
discuss the connection between our work and the closely related literature on both
intertemporal production models and efficiency analysis. Sections 3 to 5 formally
introduce our methodology. After introducing our general set-up in Section 3 , we
first consider the case where one has full information on allocations of storables
and write-offs of durables in Section 4, to subsequently present the case where
limited or no such information is known in Section 5. Section 6 presents some
extensions to the basic framework. Section 7 contains the empirical application of
our methodology to Swiss regional railway companies. Specifically, this analysis
will demonstrate the relevance of accounting for the intertemporal (durable) nature
of capital expenses in a regulated production environment. Finally, Section 8
concludes and points out a number of interesting extensions.

2. Related literature

Our framework for intertemporal production analysis bears close connections
with a number of existing studies on the analysis of efficient production behavior.
Most of this earlier work appeared under the label Data Envelopment Analysis
(DEA), which is often used to refer to the nonparametric analysis of production
efficiency. In what follows, we discuss the relation with earlier literature on net-
work DEA, efficiency analysis with quasi-fixed inputs, and DEA with lagged input
effects. In turn, this will allow us to articulate the specificities of our own contri-
bution.

First, our work is closely related to the literature on network DEA (Färe and
Grosskopf, 2000). In an early contribution to this literature, Färe (1986) showed
how to measure output efficiency by allowing for inputs that are allocatable over
time, which are similar in nature to what we call storable inputs. He makes a
distinction between inputs for which the allocation over time is known and inputs
for which (only) the total amount is known but not how this amount is allocated
over time. Importantly, however, he does not consider the intermediate case with
new inputs in every period that are to be allocated over multiple time periods.
In a similar fashion, Färe et al. (1997) model fixed but allocatable inputs over
outputs and develop an output efficiency measure that locates potential efficiency
gains due to the reallocation of inputs over the outputs. Finally, inventories are
also explicitly modeled in Hackman and Leachman (1989)’s general framework of
production.

Similarly to our use of durable inputs, Färe et al. (2007) construct a network
DEA model with durable and instantaneous inputs to model technology adoption,
where one of the technologies is vintage. Durable inputs are vintage-specific, and
the adoption of a new technology is accomplished by diverting instantaneous inputs
away from the vintage technology to the new technology.
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All these network DEA models have in common that they measure technical ef-
ficiency (without price information) and not economic efficiency (with price infor-
mation). Such technical efficiency analysis requires specific assumptions regarding
the nature of the production technology.3

Furthermore, our concept of durable inputs is also related to the notion of quasi-
fixed inputs. Nemoto and Goto (1999, 2003) model adjustment costs due to quasi-
fixed inputs and develop an efficiency measure. They treat quasi-fixed inputs as
intermediate outputs which are used as inputs in subsequent periods. Their model
was extended by Ouellette and Yan (2008) by weakening the restrictions on capital
investment. Similarly, Silva and Stefanou (2003) develop nonparametric tests for
investment in quasi-fixed inputs with internal adjustment costs in the spirit of
Varian (1984).

Next, Chen and van Dalen (2010) incorporate lagged effects of inputs on outputs
in DEA efficiency measurement. The relation between output and delayed inputs
is fixed parametrically. Thus, they assume that these productive effects are known
a priori and estimate these by a fixed effect panel vector autoregressive model in
their empirical application. This makes their efficiency measure highly dependent
on their parametric specification of the productive effects.

Basically, our contribution is that we present a unifying framework to nonpara-
metrically analyze economic (cost) efficiency in intertemporal production with both
storable and durable inputs. We explicitly model the fact that these two types
of inputs are used over several time periods: storable inputs are allocated over
multiple periods, and durable “vintage” inputs are not immediately replaced by
newer durable inputs (thus following Johansen (1959) and Forsund and Hjalmars-
son (1974)). In addition, we also allow for production delays of durable inputs
over time. Next, we propose a cost inefficiency measure that can be decomposed
in per-period inefficiencies.4 Finally, as compared to the literature on quasi-fixed
inputs, we do not focus on the issue of adjustment costs, but rather consider the
replacement of vintages of durables over time from a cost perspective (see also the
introduction of Section 3).

3. Set-up

We assume a panel setting with K firms that are observed T times. For each
firm k and time period t, we observe the S-dimensional output yk,t ∈ RS

+, the

N -dimensional storable input qk,t ∈ RN
+ , the M -dimensional durable input Qk,t ∈

RM
+ and the corresponding discounted input prices pk,t ∈ RN

++ and Pk,t ∈ RM
++

3In our concluding Section 8 we will indicate the possibility to conduct a technical efficiency
analysis in the intertemporal framework (for economic efficiency analysis) that we develop in the
following sections. These technical efficiency formulations could subsequently establish a formal
link with the existing network DEA models.

4We note that Kao (2013) proposed a similar decomposition of efficiency scores in per-period
efficiencies for a DEA model with quasi-fixed inputs.
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respectively. For every k = 1, . . . , K, this defines the dataset

Sk =
{

(pk,t,qk,t,Pk,t,Qk,t,yk,t)|t = 1, . . . , T
}
.

To keep our exposition simple, we assume that firms have perfect foresight,
i.e. they exactly anticipate the future prices. In fact, it is fairly easy to extend
our method to account for predicted prices that deviate from the prices that are
realized ex post.5 But this would only complicate our reasoning without really
adding new insights. Also, the fact that we evaluate a firm’s cost efficiency in
terms of realized prices makes that we may interpret measured inefficiencies as (ex
post) prediction errors.

Storable inputs are divisible and we assume they are used over J periods: a
fraction is used in each period, while the remaining part is stored for the next
periods. Storable inputs can only be used once and are nondurable. Durable
inputs are indivisible and usable in multiple periods before reaching end of life
status. This is where they differ from storable inputs. Durable inputs are related
to quasi-fixed inputs in that they have an effect over multiple periods, but differ
from quasi-fixed inputs because they may also be adjusted instantaneously (e.g.
one can stop using a laptop or company car immediately). In that sense, we can see
quasi-fixed inputs as a subset of durable inputs. In general, durable inputs are seen
as investments: a firm intends to use the durable input for a number of periods
and writes off the cost of investment over these periods. Examples of durable
inputs include machines, equipment, company cars, etc. To keep the exposition
simple, we also assume they are used over J periods. We show in Section 6 how
this assumption can be relaxed.

Our behavioral hypothesis is that firms are intertemporally cost minimizing.
To formalize this assumption, we represent firm technologies in terms of input
requirement sets It(yk,t) for the output of firm k produced at time period t. These
sets are defined in the usual way, i.e.

It(yk,t) =
{

(q,Q) ∈ RN+M
+ |(q,Q) can produce yk,t

}
.

Next, we make use of quantity allocations (q1
t , . . . ,q

J
t )Tt=1 of storable inputs and

price write-offs (P1
t , . . . ,P

J
t )Tt=1 of durable inputs. These allocations and write-offs

will be used to distribute firm k’s input costs over the J relevant time periods, and
are subject to the adding-up restrictions qk,t =

∑J
j=1 q

j
k,t and Pk,t =

∑J
j=1P

j
k,t.

6

Then, we say that firm k minimizes its total production costs over the time horizon

5For example, a simple solution consists of verifying the cost efficiency conditions that we
define below for alternative specifications of (anticipated) prices, as a robustness analysis.

6In Appendix A, we explain the economic intuition of the write-offs (P1
t , . . . ,P

J
t )Tt=1 as rep-

resenting (in monetary terms) marginal productivities of the durable inputs.
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[J, . . . , T ] if it chooses the allocation (q1
t , . . . ,q

J
t )Tt=1 and write-off (P1

t , . . . ,P
J
t )Tt=1

that solves

min
(q1

t ,...,q
J
t )

T
t=1

(P1
t ,...,P

J
t )

T
t=1

T∑
t=J

t∑
j=t−J+1

(
pk,jq

t−j+1
j + Pt−j+1

j Qk,j

)
(1a)

s.t.

(
J∑

j=1

qj
t−j+1,

J∑
j=1

Qk,t−j+1

)
∈ It(yk,t) ∀t = J, . . . , T,(1b)

where the last feasibility constraint states that the allocation of storables and
durables effectively admits the production of the output yk,t for the given tech-
nology. The fact that the storable and durable input quantities are summed over
J present and past periods reveals the intertemporal dependency of firm k’s pro-
duction decisions.

Table 1 sharpens the intuition of the above concepts through a simple example
that shows a firm’s observed costs and production costs over time for J = 2. The
table illustrates two crucial points. First, observed costs and production costs
generally differ. Thus, any efficiency comparison using observed costs instead of
production costs is potentially overly pessimistic. Second, the lack of information
on allocations and write-offs beyond the observed time frame limits any test of
(1) to the time period [2, . . . , T ] when J = 2 and [J, . . . , T ] in general. This
explains why we only consider the period [J, . . . , T ] in (1) instead of [1, . . . , T ] in
our minimization program.

t observed cost production cost
storable inputs durable inputs

1 p1q1 p1q
1
1 + ? P1

1Q1 + ?
2 p2q2 p2q

1
2 + p1q

2
1 P1

2Q2 + P2
1Q1

3 p3q3 p3q
1
3 + p2q

2
2 P1

3Q3 + P2
2Q2

4 p4q4 p4q
1
4 + p3q

2
3 P1

4Q4 + P2
3Q3

...
...

...
...

t ptqt ptq
1
t + pt−1q

2
t−1 P1

tQt + P2
t−1Qt−1

...
...

...
...

T − 1 pT−1qT−1 pT−1q
1
T−1 + pT−2q

2
T−2 P1

T−1QT−1 + P2
T−2QT−2

T pTqT pTq
1
T + pT−1q

2
T−1 P1

TQT + P2
T−1QT−1

T + 1 ? ? + pTq
2
T ? + P2

TQT

Table 1. Overview of production costs with storable and durable
inputs for J = 2
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4. Complete information

We next turn to deriving operational conditions for cost minimizing behavior as
defined in (1). As indicated in the Introduction, we derive nonparametric condi-
tions in the spirit of Afriat (1972); Banker and Maindiratta (1988); Varian (1984),
which make minimal assumptions regarding the production technology. To set the
stage, we first consider the limiting case that is characterized by full information
on the quantity allocations of the storable inputs and the price write-offs of the
durable inputs, that is, for each firm k the empirical analyst observes the allo-
cations (q1

k,t,q
2
k,t, . . . ,q

J
k,t) and the write-offs (P1

k,t,P
2
k,t, . . . ,P

J
k,t) at every time

period t = 1, ..., T .
Such complete information greatly simplifies matters. From (1), it is easy to

verify that, for a given specification of storable allocations and durable write-offs,
the production costs for any time period t are defined independently of the produc-
tion costs for other time periods. As an implication, firm k behaves consistently
with (1) if and only if it solves, for every t = J, ..., T ,

min
(q1

j ,...,q
J
j )

t
j=t−J+1

(P1
j ,...,P

J
j )

t
j=t−J+1

t∑
j=t−J+1

(
pk,jq

t−j+1
j + Pt−j+1

j Qk,j

)
(2a)

s.t.

(
J∑

j=1

qj
t−j+1,

J∑
j=1

Qk,t−j+1

)
∈ It(yk,t)(2b)

Putting it differently, dynamically cost minimizing behavior under complete
information can be represented as statically cost minimizing behavior for every
period t. Varian (1984) developed the nonparametric characterization of such
static cost minimization.7 Thus, we can obtain our empirical condition for dynamic
cost efficiency by translating Varian’s reasoning to our particular setting.

Throughout, we will adopt the next two axioms regarding the production tech-
nology (given by It(yk,t)):

Axiom 1 (observability means feasibility). For all t = 1, . . . , T and k = 1, . . . , K :

(pk,t,q
1
k,t, . . . ,q

J
k,t,P

1
k,t, . . . ,P

J
k,t,Qk,t,yk,t) ∈ Sk ⇒

(∑J
j=1 q

j
k,t−j+1,

∑J
j=1 Qk,t−j+1

)
∈

It(yk,t).

Axiom 2 (nested input sets). For all t = 1, . . . , T and k, s = 1, . . . , K : ys,t ≥
yk,t ⇒ It(ys,t) ⊆ It(yk,t).8

7Varian (1984) characterized cost minimizing production behavior in terms of the so-called
Weak Axiom of Cost Minimization (WACM). Basically, Proposition 1 will state this WACM
criterion for our intertemporal setting.

8Throughout ys,t ≥ yk,t should be interpreted as vector inequalities, implying that the in-

equality needs to hold for all components.
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In words, Axiom 1 says that there are no significant measurement errors in the
data.9 Axiom 2 says that, for a given time period t, input requirement sets are
nested: if firm s produces at least the same output as firm k (i.e. ys,t ≥ yk,t), then

the input set for s must be contained in the set for k (i.e. It(ys,t) ⊆ It(yk,t)).
10

Intuitively, this means that outputs are freely disposable. These are the only two
production axioms that we will assume in the sequel of this paper.

Then, we define

(3) ck,t = min
s∈Dt

k

{
t∑

j=t−J+1

(
pk,jq

t−j+1
s,j + Pt−j+1

k,j Qs,j

)}
.

for

(4) Dt
k =

{
s|ys,t ≥ yk,t

}
,

i.e. the set of observed firms s that produce at least the same output as firm k in
period t (i.e. ys,t ≥ yk,t). By construction, we have k ∈ Dt

k, so that Dt
k 6= ∅. In

words, ck,t represents the minimal cost over this set Dt
k. Obviously, we can compute

ck,t by simply enumerating over all s ∈ Dt
k if the allocations (q1

k,t,q
2
k,t, . . . ,q

J
k,t) and

write-offs (P1
k,t,P

2
k,t, . . . ,P

J
k,t) are given.

We can now state the following result.

Proposition 1. Firm k solves (1) for a production technology that satisfies Axioms
1 and 2 if and only if, for all t = J, ..., T ,

(5)
t∑

j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)
= ck,t.

Proof. We use the equivalence between (1) and (2). Then, the result follows from
Theorem 1 (statements (1) and (2)) of Varian (1984). �

9Clearly, this axiom may often be problematic in practical situations. In such instances, we
can use alternative techniques to explicitly account for errors. For example, one may adjust our
methodology by integrating it with the probabilistic method which Cazals, Florens, and Simar
(2002) and Daraio and Simar (2005, 2007) originally proposed in a DEA context. To focus our
discussion, we do not consider this extension here.

10We remark that this assumes that different firms s and k face the same technology in period t.
Obviously, we can also use other hypotheses regarding technological homogeneity/heterogeneity
across firms and time periods. For example, we may assume homogeneous technologies (only)
for subsets of firms (e.g. defined on the basis of observable firm characteristics), or firm-specific
technologies that are constant over time. For compactness, we will again not explicitly implement
this.
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This results directly suggests the next measure of cost inefficiency for every
period t:

(6) CEt
k ≡

t∑
j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)
− ck,t,

Obviously, firm k meets the empirical cost minimization criterion (5) in Proposition
1 if and only if CEt

k = 0. More generally, we have CEt
k ≥ 0, and the value of CEt

k

indicates how much firm k deviates from cost minimizing behavior at time t.
When aggregating over all t = J, . . . , T , we can similarly define an overall cost

inefficiency measure as

CEk ≡
T∑

t=J

t∑
j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)
−

T∑
t=J

ck,t.(7)

By construction, we have

CEk =
T∑

t=J

(
t∑

j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)
− ck,t

)
=

T∑
t=J

CEt
k,(8)

which yields the next result.

Proposition 2. CEk = 0⇔ CEt
k = 0 ∀t = J, . . . , T .

Proof. The result follows from (7) and the definitional fact that CEt
k ≥ 0. �

In words, firm k minimizes its total production costs over the full period [J, . . . , T ]
if and only if its production costs are minimal in every single period t. Essentially,
this result shows that our overall cost inefficiency measure CEk satisfies the ag-
gregate indication axiom of Blackorby and Russell (1999).

5. Incomplete information

The previous section assumed an ideal scenario in which the empirical ana-
lyst had full knowledge of the allocations (q1

k,t,q
2
k,t, . . . ,q

J
k,t) and the write-offs

(P1
k,t,P

2
k,t, . . . ,P

J
k,t). In practice, however, only very limited information on allo-

cations and write-offs is often available. It may even happen that such information
is completely absent. This section shows how to proceed in such (more realistic)
instances.

Formally, we will assume that the available information is captured by the poly-
hedron

(9) Θ(A,b) ≡
{
ρ ∈ RTJ(N+M)

+ : Aρ ≥ b
}
,

which represents L restrictions on the allocations of storable inputs and on the
write-offs of durable inputs. Specifically, A is a L× TJ(N + M) matrix and b a
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L× 1 vector, and ρ represents all vectors that satisfy the constraints imposed by
A and b.

To structure our discussion, we will first consider the limiting case in which we
cannot use any information on firms’ allocations and write-offs, which corresponds

to Θ = RTJ(N+M)
+ . Subsequently, we will discuss the intermediate scenario where

some information is available, i.e. Θ ⊂ RTJ(N+M)
+ .

5.1. No information on allocations and write-offs. In the absense of full
information on storable allocations and durable write-offs, we can no longer check
the condition (2) independently for every single time period t. In this case, we
verify if there exists at least one possible specification of (q1

k,t,q
2
k,t, . . . ,q

J
k,t) and

(P1
k,t,P

2
k,t, . . . ,P

J
k,t) that makes firm k’s behavior consistent with the overall cost

minimization condition (1). More specifically, we define feasible allocations and
write-offs that present firm k as efficient as possible. This evaluates firm k in
the most favorable light and, thus, gives this firm the benefit-of-the-doubt in the
absence of full information.11

The following linear program operationalizes this idea:

min
ck,t≥0,

(q1
s,t,...,q

J
s,t)

T
t=1≥0,

(P1
k,t,...,P

J
k,t)

T
t=1≥0

T∑
t=J

(
t∑

j=t−J+1

pk,jq
t−j+1
k,j + Pt−j+1

k,j Qk,j − ck,t

)(10a)

s.t. ck,t ≤
t∑

j=t−J+1

pk,jq
t−j+1
s,j + Pt−j+1

k,j Qs,j ∀s ∈ Dt
k,(10b)

∀t = J, . . . , T,

J∑
j=1

qj
s,t = qs,t ∀s ∈ Dt

k,(10c)

∀t = 1, . . . , T,

J∑
j=1

Pj
k,t = Pk,t ∀t = 1, . . . , T,(10d)

In this program, the objective minimizes firm k’s cost inefficiency (as defined
in (7)) in terms of the chosen allocation and write-off schemes. The first con-
straint imposes that ck,t effectively represents the minimal cost to produce the
output yk,t (over the set Dt

k). The second and third constraints impose the

11This benefit-of-the-doubt idea is intrinsic to DEA efficiency evaluations. See, for example,
Cherchye et al. (2007) for a detailed discussion of the benefit-of-the-doubt interpretation of DEA
models in the specific context of composite indicator construction.
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adding-up restrictions that apply to feasible specifications of (q1
k,t,q

2
k,t, . . . ,q

J
k,t)

and (P1
k,t,P

2
k,t, . . . ,P

J
k,t). Intuitively, cost inefficiency occurs as soon as some

other firm s is characterized by a lower production cost than firm k no matter
what allocations and write-offs are used.

5.2. Partial information on allocations and write-offs. In many practical
situations, it is possible to put some additional restrictions on the feasible allo-
cation and write-off schemes. Such partial information can be incorporated by
suitably specifying Θ(A,b). Correspondingly, we can append the restriction

(11) (q1
s,t, . . . ,q

J
s,t,P

1
k,t, . . . ,P

J
k,t)

T
t=1 ∈ Θ(A,b)

to program (10), and solve the resulting (linear) problem. Clearly, by using re-
striction (11) we constrain the solution space, which will generally result in higher
values of the computed cost inefficiencies.

To take a specific instance, let (qu,A
k,v )u∈U⊆[1,...,J ] represent lower bounds on the

quantity allocations of the storable inputs for firm k and time period(s) v ∈ V ⊆
[J, . . . , T ]. Similarly, let (Pw,A

k,z )w∈W⊆[1,...,J ] be known lower bounds on the price
write-offs of the durable inputs for time period(s) z ∈ Z ⊆ [J, . . . , T ]. We then
define

Θ =
{
qu
k,v ≥ qu,A

k,v , ∀u ∈ U, ∀v ∈ V

Pw
k,z ≥Pw,A

k,z , ∀w ∈ W, ∀z ∈ Z
}
.

As a limiting case, instantaneous input consumption complies with qu,A
k,v = (qk,v,

0, . . . , 0) or, equivalently, Pw,A
k,z = (Pk,z, 0, . . . , 0).

5.3. Write-off hypotheses. By using this approach, we can actually include (and
check) alternative hypotheses regarding the allocation of the durable costs to in-
dividual time periods (i.e. specific write-off schemes). For example, it might often
be reasonable to assume that the firm’s valuation of a durable input diminishes
over time. In our framework, this corresponds to

(12) P1
k,t ≥P2

k,t ≥ . . . ≥PJ
k,t,

which complies with a degressive write-off of investment costs. From our above
explanation, it follows that this is also consistent with the assumption of techno-
logical improvement, where older machines are scrapped and replaced by newer
-technologically improved- ones over time.

Alternatively, a linear write-off of investment corresponds to

(13) P1
k,t = P2

k,t = . . . = PJ
k,t,

implying that Pj
k,t = Pk,t/J ∀j = 1, . . . , J . Both hypotheses can be tested by

adding (12) or (13) for t = J, . . . , T to Θ(A,b).
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6. Extensions

We next focus on a number of extensions of our basic framework set out in the
previous section. These extensions highlight the versatility of our framework and,
of course, are not exhaustive. First, we show how to convert our (difference) cost
inefficiency measures (6) and (7) in ratio form. Then, we discuss the extension
of our framework to allow for heterogeneous input lifetime and production delays.
Finally, we indicate how to proceed in the absence of input price information by
applying shadow pricing. Here, we will also explain the decomposition of cost
inefficiency as defined above in terms of technical and allocative inefficiency. We
will illustrate the different extensions in our empirical application in Section 7.

6.1. Ratio measures of inefficiency. A downside of our cost inefficiency mea-
sure in (7) is that it is not invariant to rescaling of prices and inputs. However, one
can turn this difference measure into a ratio measure of cost inefficiency by an ap-
propriate normalization. In principle, a multitude of normalizations are possible.
A natural choice is to divide by the actual cost, i.e.

RCEk ≡
CEk∑T

t=J

∑t
j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)(14)

This relative measure is situated between 0 and 1 and expresses the proportion
of total production costs that can be saved by minimizing total production costs
over the periods [J, . . . , T ].12

Analogously to (8), we can decompose this overall ratio measure in terms of
per-period measures.13 In this case, we have that RCEk equals a weighted sum of
per-period cost inefficiencies in ratio form RCEt

k. Specifically, it uses the period-
specific weights

wt
k ≡

∑t
j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)∑T
t=J

∑t
j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

) ,(15)

which represent the proportions of total production costs allocated to every period
t. This obtains

12This normalization mirrors the one used by Chambers et al. (1998) for profit efficiency.
13The following decomposition parallels Färe and Zelenyuk (2003)’s decomposition of industry

revenue efficiency as a weighted sum of firms’ revenue efficiency.
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RCEk =
T∑

t=J

wt
k

CEt
k∑t

j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

)
=

T∑
t=J

wt
k

(
1− ck,t∑t

j=t−J+1

(
pk,jq

t−j+1
k,j + Pt−j+1

k,j Qk,j

))

=
T∑

t=J

wt
kRCE

t
k,(16)

As a final note, we indicate that 1 − RCEk and 1 − RCEt
k give the conventional

cost efficiency measures, i.e. minimal cost divided by actual cost.

6.2. Heterogeneous input lifetime and production delays. Until now, we
have assumed that all durable inputs have the same lifetime J . Admittedly, this
may sometimes be a too strong assumption. In addition, our current specification
does not allow for production delays. As we show next, we can solve both issues
by making use of the concept of delay matrices.

Specifically, let DD = (dD
1 , . . . ,d

D
J ) ∈ {0, 1}M×J denote a binary delay matrix,

where each row represents a durable input. For example, for the durable input m
we may use one of the following specifications:

• (1, 0, . . . , 0︸ ︷︷ ︸
J−1

) if input m is an instantaneous input;

• (1, . . . , 1) if input m is a durable input with lifetime J ;
• (0, . . . , 0︸ ︷︷ ︸

U

, 1, . . . , 1︸ ︷︷ ︸
J−U

) if input m is a durable input usable after a delay of

U < J periods with a lifetime of J − U periods;
• (1, . . . , 1︸ ︷︷ ︸

U

, 0, . . . , 0︸ ︷︷ ︸
J−U

) if input m is a durable input usable over U < J periods.

Similarly, let DS = (dS
1 , . . . ,d

S
J ) ∈ {0, 1}N×J represent a binary delay matrix

for the storable inputs. Then, we can formulate the next modified optimization
problem of firm k:

min
(q1

t ,...,q
J
t )

T
t=1

(P1
t ,...,P

J
t )

T
t=1

T∑
t=J

t∑
j=t−J+1

pk,jd
S
t−j+1q

t−j+1
j + Pt−j+1

j dD
t−j+1Qk,j

(17a)

s.t.

(
J∑

j=1

dS
j q

j
t−j+1,

J∑
j=1

dD
j Qk,t−j+1

)
∈ It(yk,t) ∀t = J, . . . , T(17b)
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Closer inspection reveals that dS
j q

j
t−j+1 and dD

j Qk,t−j+1 only selects those inputs
that are usable in period j. In this case, J stands for the maximum lifetime over
all durable and storable inputs.

The associated linear program is

min
ck,t≥0,

(q1
s,t,...,q

J
s,t)

T
t=1≥0,

(P1
k,t,...,P

J
k,t)

T
t=1≥0

T∑
t=J

(
t∑

j=t−J+1

pk,jd
S
t−j+1q

t−j+1
k,j + Pt−j+1

k,j dD
t−j+1Qk,j − ck,t

)(18a)

s.t. ck,t ≤
t∑

j=t−J+1

pk,jq
t−j+1
s,j dS

t−j+1 + Pt−j+1
k,j dD

t−j+1Qs,j ∀s ∈ Dt
k,

(18b)

∀t = J, . . . , T,

J∑
j=1

qj
s,td

S
j = qs,t ∀s ∈ Dt

k,(18c)

∀t = 1, . . . , T,

J∑
j=1

Pj
k,td

D
j = Pk,t ∀t = 1, . . . , T,(18d)

(q1
s,t, . . . ,q

J
s,t,P

1
k,t, . . . ,P

J
k,t)

T
t=1 ∈ Θ(A,b).(18e)

It is easy to verify that this program reduces to (10) for DS = 1N×J and DD =
1M×J . Furthermore, any zero values in DS and DD immediately imply zero values
for the corresponding allocations and write-offs. In other words, the use of delay
matrices allows us to impose a priori restrictions on the storable allocations and
durable write-offs. We also remark that, in principle, we can specify firm-specific
delay matrices if this seems desirable.

6.3. Shadow prices and technical inefficiency. So far, we have focused on
economic (cost) efficiency, which requires price information for the relevant inputs.
By contrast, technical efficiency analysis does not require such price information
and, thus, can be used if limited price information is available.

Generally, technical efficiency criteria/measures can be characterized as eco-
nomic efficiency criteria/measures evaluated at so-called “shadow prices”.14 Thus,
by establishing the shadow price representation of our dynamic efficiency concepts,

14In DEA terminology, this shadow price characterization of technical efficiency corresponds
to the “multiplier” formulation of DEA models. Practical applications often make use of DEA
models in “envelopment” form, which is dual to this multiplier formulation. In our set-up, the



16 L. CHERCHYE, B. DE ROCK, AND P. J. KERSTENS

we can define technical efficiency notions that explicitly account for the dynamic
(storable and durable) nature of the inputs.

It is easy to use shadow pricing if the exact allocation of storable inputs over
time periods (i.e. (q1

s,t, . . . ,q
J
s,t)

T
t=1) is known to the empirical analyst. In that case,

it suffices to solve (18) with the input prices (Pk,t)
T
t=1 and (pk,t)

T
t=1 as additional

free variables that are subject to a negativity constraint and the normalization
T∑

t=J

(
t∑

j=t−J+1

pk,jq
t−j+1
k,j dS

t−j+1 + Pt−j+1
k,j dD

t−j+1Qk,j

)
= 1.

We remark that this price normalization implies CEk = RCEk.
Let TEk represent the “technical inefficiency” measure that is obtained as the

solution of the resulting linear program. By construction, we have TEk ≤ RCEk.
The difference between TEk and RCEk gives us a measure AEk of allocative
inefficiency, i.e.

(19) TEk + AEK = RCEk ⇔ AEk = RCEk − TEk.

Interestingly, because RCEk = CEk under our price normalization and using
(7), we can also decompose AEk in period-specific allocative inefficiencies, as fol-
lows:

(20) AEk ≡
T∑

t=J

(
RCEt

k − TEt
k

)
=

T∑
t=J

AEt
k.

Finally, matters are more complicated when the allocation (q1
s,t, . . . ,q

J
s,t)

T
t=1 is

unobserved. In that case, the analogue of the programming problem (18) becomes
nonlinear in unknown prices and quantities. We can restore linearity by making
specific assumptions regarding the storable input allocation. For example, if we
are willing to assume that all DMUs allocate their storable inputs in the same way
over time, then we can use a similar procedure as outlined in Cook et al. (2000)
and Cherchye et al. (2013).

7. Empirical illustration

We apply our model to a panel dataset of Swiss regional railway companies that
was also studied by Farsi et al. (2005).15 The original panel is unbalanced and
contains yearly information on 50 railway companies over the period 1985− 1997.
From this dataset, we constructed a balanced panel that covers the 13-year period
for 37 companies, and which contains all input and output information needed to
apply our methodology. The constructed balanced panel contains 481 (= 13× 37)
firm observations.

envelopment formulation can be obtained as the dual of the linear program that we define below
(to compute TEk).

15The data are available at http://people.stern.nyu.edu/wgreene/Econometrics/

PanelDataSets.htm, which also contains a detailed description of all variables.

http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm
http://people.stern.nyu.edu/wgreene/Econometrics/PanelDataSets.htm
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In what follows, we first motivate our selection of outputs and inputs, where we
will use capital expenses as a durable input. Then, we present the results of our
empirical analysis, which will mainly focus on overall and per-period efficiencies as
well as technical and allocative inefficiency. We conclude by a number of sensitivity
checks.

7.1. Output and input specification. The original dataset contains informa-
tion on total expenses, labor and energy expenses, as well as the total number
of employees, electricity consumption, network length, total number of available
seats, total number of train-kilometers, passenger-kilometers and ton-kilometers.
Capital expenses are defined as the residual after deducting labor and energy from
the total expenses. Prices for labor and energy are found by dividing (labor and
energy) expenses by total quantity (number of employees and total electricity con-
sumption in kWh, respectively). The price of capital is defined by dividing capital
expenses by total number of seats.

Following Farsi et al. (2005), we use total passenger-kilometers and ton-kilometers
as our two outputs in our following analysis. Next, we have three inputs: labor,
energy and capital expenses. We refer to Farsi et al. (2005) for more details on
the data. Table 2 presents summary statistics. The most important observation
is that labor and capital expenditures are the major costs (52.82% and 43.41% on
average), while energy expenditures represents only a small fraction of the total
cost (i.e. 3.77% on average).

mean std median min max share (in %)

Passenger output in passenger kilometers (Q2) (×108) 0.2843 0.5192 0.0919 0.0041 3.1100 95.27
Goods output in ton kilometers (Q3) (×107) 0.2135 0.8158 0.0226 0.0000 5.9400 4.73

Length of railway network in km (NETWORK) 39.5340 61.0973 22.8200 3.8980 376.9970 n.a.
Number of stations on the network (STOPS) 20.8274 20.1613 15.0000 4.0000 121.0000 n.a.

Labor price adjusted for inflation (PL) (×105) 0.8550 0.0602 0.8557 0.6093 1.0493 n.a.
Number of employees (STAFF) (×103) 0.1401 0.2517 0.0520 0.0120 1.6410 n.a.
Labor expenditures (LABOREXP) (×107) 1.2189 2.1945 0.4406 0.0985 14.6988 52.82

Price of electricity in CHF per kWh (PE) 0.1574 0.0240 0.1580 0.0763 0.2652 n.a.
Total consumed electricity in kWh (KWH) (×107) 0.5775 1.0317 0.1980 0.0082 6.5849 n.a.
Energy expenditures (ELECEXP) (×105) 8.4849 12.9842 3.0220 0.1400 81.0408 3.77

Capital price per seat (PK) (×106) 0.2182 0.3644 0.0872 0.0212 2.4105 n.a.
Quantity of Capital (CAPITAL) 43.4092 9.4026 41.7978 23.8892 77.3315 n.a.
Capital expenditures (×106) 8.7849 13.4185 3.9922 0.6119 87.9753 43.41

Total costs adjusted for inflation (CT) (×108) 0.2182 0.3644 0.0872 0.0212 2.4105 100

Table 2. Summary statistics of the railway data (481 observations)

As indicated above, capital expenditures form a prime example of durable in-
puts. Therefore, while we consider labor and energy expenditures as instanta-
neously consumed (i.e. not storable or durable), we will treat capital expenditures
as durable. For the general model specification (with capital usable in J years),
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this obtains the 3× J delay matrix

DD =

1 0 . . . 0
1 0 . . . 0
1 1 . . . 1︸ ︷︷ ︸

J−1

 ,

with labor, energy and capital corresponding to rows 1, 2 and 3, respectively.
Table 3 reports summary statistics on our durable input. We see that, in nominal

terms, capital costs are steadily increasing until 1991. Within individual years, we
also observe considerable variation across firms. The magnitude of this variation
is fairly stable over time.

year mean std min max
85 7821.9918 13415.8909 675.5952 79364.5942
86 7947.3623 13476.0897 611.8980 79606.2277
87 8226.9291 13474.9261 614.8458 78815.1313
88 8769.3795 13483.8216 725.2748 79002.7419
89 9293.5348 13890.6071 1104.4175 79672.0210
90 9531.1382 14310.4937 833.1193 82232.3410
91 9683.8843 14759.9689 991.5967 86268.9002
92 9541.3585 14988.2197 949.5515 87975.3422
93 8868.5766 13414.5760 940.9871 78469.9559
94 8709.7330 13665.2525 704.6633 80731.6209
95 8707.0591 12669.9599 691.9920 73890.1362
96 8396.3872 12086.1047 780.2419 70634.0593
97 8706.7027 12561.9671 873.0000 73087.0000

Table 3. Capital costs: summary statistics per year (in 1000 CHF)

It follows from our discussion in the previous sections that treating capital ex-
penses as a durable input requires us to use discounted prices, and to specify the
lifetime of capital (i.e. J). In our application all provided prices are adjusted
for inflation with respect to 1997 prices. Next, capital costs are related to equip-
ment as well as materials. This makes it hard to specify the exact lifetime of this
durable input. For this reason, and to clearly demonstrate the potential impact of
intertemporal dependencies between inputs, we will mainly focus on a minimalistic
scenario with J = 2. As an additional exercise, we will also consider alternative
values for J , to check robustness of our main conclusions.

7.2. Cost efficiency analysis. In summary, the dynamic nature of our empir-
ical analysis relates to a single durable input, capital expenses. Moreover, this
input represents a fairly large fraction of the total cost relative to the instanta-
neous inputs, labor and energy expenses (see our discussion of Table 2). In what
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follows, we will show that ignoring the intertemporal (durable) aspect of capital
can substantially affect the efficiency analysis. In turn, referring to our discussion
in the Introduction, this can considerably distort regulatory policies (in our case
for Swiss railway companies) that are based on the efficiency results. Obviously,
these distortions will generally be more pronounced in production settings where
durable inputs form an even more important fraction of total costs, and in settings
with storable inputs in addition to durable inputs.

We first consider the differences in cost inefficiencies between the dynamic and
static setting. Figure 1 shows the differences between the CEt

k-values for our
dynamic model (with J = 2) and the static model (which corresponds to J = 1).
The differences in per-period inefficiencies are quite substantial: in some years
(such as 89, 92 and 94) ignoring intertemporal effects leads to an underestimation
of productive inefficiency by as much as 4 million CHF, while in other years (e.g.
88, 90 and 93) it leads to an overestimation by no less than 6 million CHF. The
differences are statistically significant: comparing the cumulative density functions
of CEt

k using a Kolmogorov-Smirnov test, we reject at the 1% significance level
the hypothesis that both densities have the same underlying distribution.16
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Figure 1. Dynamic (J = 2) vs. static (J = 1) CEt
k

Next, we turn to the ratio measure RCEk that we defined in (14). Comparing
the results for J = 1 with those for J = 2 provides further insight into the severity

16The value of the test statistic is 0.1351, which corresponds to a p-value of 5.24× 10−4.
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and frequency of disagreement between the dynamic and static inefficiency models.
Figure 2 depicts a histogram of the differences in RCEt

k-values. Both models agree
in terms of RCEt

k in 61.94% of all cases. For the cases where they do not agree,
this histogram shows that inefficiency is more often overestimated by the static
model: in 13.02% of all cases the static model overestimates inefficiency by at least
5%, while inefficiency is underestimated by at least 5% in only 4.14% of the cases.
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Figure 2. Histogram of dynamic - static RCEt
k (> 0)

As a following exercise, we redo our analysis by using shadow prices. As ex-
plained above, this effectively computes the technical inefficiency measure TEk,
which we can further use to calculate the aggregate allocative inefficiency measure
AEk (in (19)) as well as per-period allocative inefficiencies AEt

k (in (20)). Table 4
shows the TEk and AEk results for all firms. We find that technical inefficiency is
rather negligible for the firms under study: the maximal TEk-value amounts to no
more than 4.899× 10−9. In contrast, the AEk-values are quite high for a number
of firms: the worst performing firm has an allocative inefficiency of as much as
0.3636. Figure 3 also shows that there is substantial variation in the AEt

k-values
over time.

7.3. Robustness checks. We conclude our empirical analysis by conducting a
number of robustness checks. These additional exercises will further illustrate the
versatility of our general framework, in terms of relaxing or imposing particular
assumptions in the intertemporal efficiency assessment. First, we consider the
effect of specifying J on our results. Second, we investigate the effects of different
environmental variables on the efficiency scores. Finally, we compute efficiency
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firm id TEk rank AEk rank
2 1.334e-13 26 0.02762 23
3 3.209e-14 24 0.0399 25
4 9.104e-15 16 3.726e-11 11
5 2.645e-17 8 -7.34e-18 5
6 1.608e-14 17 0.01319 19
7 2.781e-14 23 0.01699 21
8 1.86e-13 28 0.02674 22
9 2.508e-13 29 0.1993 34
10 -1.166e-15 5 1.612e-10 13
12 5.801e-14 25 0.04194 26
13 5.633e-11 36 0.3636 37
14 5.694e-12 33 -5.692e-12 2
15 1.437e-13 27 0.09381 30
16 4.899e-09 37 0.1528 31
17 2.359e-16 10 0.1605 32
18 1.42e-12 31 -1.412e-12 3
20 -4.066e-15 3 0.2009 35
21 5.967e-13 30 0.0883 28
22 -1.11e-16 6 0.2082 36
23 -1.535e-13 2 7.38e-13 8
24 1.976e-14 20 0.08463 27
26 2.57e-14 22 1.238e-12 9
27 2.22e-16 9 0.004088 16
30 4.287e-12 32 0.1862 33
31 -4.978e-13 1 3.269e-10 15
34 6.904e-12 35 2.034e-10 14
36 5.135e-16 11 0.0127 18
37 0 7 4.068e-14 6
39 5.551e-16 12 3.511e-13 7
41 5.878e-12 34 -5.878e-12 1
42 2.329e-14 21 3.881e-11 12
43 7.883e-15 15 0.0139 20
45 1.221e-15 13 -1.124e-15 4
46 -3.608e-15 4 0.0937 29
47 1.787e-14 18 0.00819 17
48 4.219e-15 14 0.03071 24
49 1.932e-14 19 3.268e-12 10

Table 4. TEk and AEk
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results when imposing particular (degressive and linear) structure on the write-off
schemes used by the evaluated firms.

We begin by evaluating the overall dynamic inefficiencies of our 37 firms for
alternative specifications of J (> 1). Table 5 shows the scores and the relative
rankings of all firms for varying choices of J . An interesting observation is that,
although we observe some changes for different J-values, the firm rankings are
fairly robust in general. In a similar vein, for most firms the inefficiency scores
do not change much with J . This is confirmed by 6 Kolmogorov-Smirnov tests
that verify equality of distribution of the inefficiency scores: all p-values ranged
between 0.4787 − 0.9995, so that we cannot reject the null hypothesis that the
inefficiencies come from the same underlying distribution.

Next, we examine whether differences in firms’ (observable) environments impact
the efficiency results. In this respect, our dataset contains information on the
length of the railway network (NETWORK) and the number of stations in the
network (STOPS) (see Table 2). A priori, one may expect both variables to have
a negative effect on efficiency, as larger networks can give rise to higher costs due
to maintenance and, similarly, because more stops imply additional (e.g. time-
related) expenditures, all else equal. Next, the dataset contains a dummy variable
indicating whether the network has a rack rail (“cremaillere”; represented by the
binary variable RACK). Rack rails are special rails that are used to aid climbing
of trains on steep terrain. Therefore, one may argue that the presence of rack rails
effectively signals a less favorable operational environment.
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firm id J=2 rank J=3 rank J=4 rank J=5 rank
2 0.028 23 0.021 23 0.011 22 0.0016 22
3 0.04 25 0.032 25 0.03 25 0.024 25
4 3.7e-11 11 1.5e-14 12 5.9e-13 12 1.4e-14 7
5 1.9e-17 1 2.4e-12 16 9.1e-13 13 -8.4e-17 1
6 0.013 19 0.013 22 0.011 23 0.0064 23
7 0.017 21 0.0091 21 0.0015 21 0.00036 21
8 0.027 22 0.023 24 0.02 24 0.022 24
9 0.2 34 0.19 35 0.19 35 0.16 34

10 1.6e-10 13 2.1e-10 18 4.3e-10 20 1.3e-10 19
12 0.042 26 0.041 26 0.04 26 0.041 26
13 0.36 37 0.37 37 0.37 37 0.36 37
14 1.6e-15 4 4.6e-15 9 3.2e-15 5 3e-11 16
15 0.094 30 0.081 28 0.066 27 0.057 27
16 0.15 31 0.14 32 0.14 32 0.14 32
17 0.16 32 0.14 31 0.13 31 0.11 31
18 7.7e-15 5 4.7e-16 7 2e-16 2 1.6e-10 20
20 0.2 35 0.18 33 0.17 33 0.16 33
21 0.088 28 0.085 29 0.081 29 0.067 28
22 0.21 36 0.21 36 0.21 36 0.21 36
23 5.8e-13 8 6.5e-15 10 8.5e-15 7 2.6e-15 6
24 0.085 27 0.08 27 0.078 28 0.068 29
26 1.3e-12 9 9.3e-17 6 2.7e-14 10 3.3e-14 8
27 0.0041 16 3.6e-15 8 2.5e-12 15 6e-16 5
30 0.19 33 0.19 34 0.18 34 0.18 35
31 3.3e-10 15 3.2e-17 3 1.9e-17 1 3.1e-13 10
34 2.1e-10 14 2.1e-12 15 5.1e-12 16 3.5e-14 9
36 0.013 18 -3.4e-15 2 2.4e-14 9 2.2e-12 13
37 4.1e-14 6 5.3e-17 5 5.9e-13 11 2.4e-16 4
39 3.5e-13 7 1.4e-14 11 3.2e-16 3 3.8e-12 14
41 2e-16 3 3.1e-13 13 5.7e-11 18 1.4e-16 3
42 3.9e-11 12 2.6e-10 19 2.1e-14 8 3.8e-11 17
43 0.014 20 2.8e-11 17 1.2e-12 14 -2.9e-17 2
45 9.7e-17 2 1.2e-12 14 1.9e-10 19 6.2e-13 11
46 0.094 29 0.092 30 0.096 30 0.09 30
47 0.0082 17 -1.3e-14 1 5.7e-15 6 1.2e-12 12
48 0.031 24 0.0032 20 3.9e-11 17 3.9e-11 18
49 3.3e-12 10 4.9e-17 4 3.8e-16 4 5.2e-12 15

Table 5. RCEk for different J
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We investigate how these variables affect our results by conducting, for each
variable separately, an extra efficiency analysis in which we add the environmental
variable zs,t ∈ R+ as an additional output. Basically, this procedure implies that
the dominating set (4) is modified to (only) include those peers that (1) produce
at least the same output and (2) operate under the same, or worse, environmen-
tal conditions than the firm under examination. Following Ruggiero (1996), the
modified dominating set is:

Dt
k =

{
s|ys,t ≥ yk,t

}
∩

{
s|zs,t = zk,t} zs,t ∈ {0, 1} ,
s|zs,t ≥ zk,t} Otherwise

,

where zs,t ≥ zk,t implies s operates under worse conditions than k. By comparing
these new efficiency results with the original ones for J = 2 (see Table 5), we can
investigate the efficiency effect of the three contextual variables under study.

The results of these three exercises are summarized in Figures 4-5-6. Specifically,
each of these figures sets out the firm ranks for the new exercises to the original firm
ranks. Firms situated below the 45 degree line have a higher ranking (i.e. lower
rank number) when the contextual variable (respectively, NETWORK, STOPS
and RACK) is taken into account while, obviously, the opposite holds for firms
above the 45 degree line. For each of our three environmental variables, we find
that the firm ranks are fairly mildly affected, with the exception of a few firms. This
is confirmed by Wilcoxon signed-rank tests, which check the statistical significance
of the difference between the new and original rankings: it turns out that there is
no significant difference for any of the three variables under evaluation.17 We may
thus conclude that none of our three contextual variables has a substantial effect
on the efficiency patterns that we presented above.

Finally, at the end of Section 5 we indicated that an interesting feature of our
methodology is that it allows for imposing specific hypotheses regarding the allo-
cation of the costs of durables to individual time periods (i.e. putting structure on
the write-off schemes). As a last robustness check, we compute efficiency results
for the degressive scheme in (12) and the linear scheme in (13).

Our results are given in Table 6. We observe that, for a number of firms, the
inefficiency values for the degressive write-off scheme are somewhat above the ones
that we obtained in our original analysis (see the “Unconstrained” column), and
the values for the linear scheme are always above those for the degressive scheme.
Actually, this could be expected a priori, as the degressive and linear models put
increasingly stringent structure on possible allocations of capital costs to successive

17More specifically, the Wilcoxon signed-rank test compares the ranking of individual firms
by first taking the difference in ranking. Observations with zero difference are dropped. These
differences are then ranked and these ranks are summed. If there is no difference in ranking then
the test statistic is zero. For NETWORKS the statistic equals 269 and the associated p-value
is 0.3136, for STOPS the statistic is 258 and the p-value 0.1576, and for RACK the statistic
amounts to 236 and the p-value 0.1246.
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Figure 4. Firm rank comparison: with and without NETWORK
as output
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Figure 5. Firm rank comparison: with and without STOPS as output
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Figure 6. Firm rank comparison: with and without RACK as output

time periods. However, the firms’ inefficiency differences are very small in general.
In fact, the efficiency rankings hardly change. Thus, we may safely conclude that
the efficiency results of our main analysis presented above are quite robust with
respect to using degressivity or linearity for the write-off schemes of the durable
capital input.

8. Conclusion

We have presented a methodology for intertemporal analysis of economically
(cost) efficient production behavior that can account for intertemporal consider-
ations related to the use of storable and durable inputs. The methodology is
intrinsically nonparametric, which means that it does not require imposing (non-
verifiable) functional structure on the production technology. The methodology
is versatile in that it can account for production delays of durable inputs. In ad-
dition, it allows for defining a cost inefficiency measure that can be decomposed
in period-specific inefficiencies. These cost inefficiencies can be computed through
simple linear programming.

Our application to Swiss railway companies has shown the empirical usefulness
of our methodology. Most notably, it showed that explicitly accounting for the dy-
namic nature of (in our case capital) inputs can significantly impact the efficiency
results. For a considerable number of firms, we found that per-period inefficiencies
for our model with capital investments as durable inputs differed substantially
from the ones for the (static) model that ignores such intertemporal durability. At
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firm id Unconstrained rank Degressive rank Linear rank
2 0.028 23 0.03 22 0.032 19
3 0.04 25 0.04 25 0.041 23
4 3.7e-11 11 4.7e-11 12 2.6e-16 1
5 1.9e-17 1 1.5e-10 13 0.0011 14
6 0.013 19 0.014 17 0.015 17
7 0.017 21 0.018 19 0.021 18
8 0.027 22 0.031 23 0.044 24
9 0.2 34 0.21 36 0.23 36
10 1.6e-10 13 4e-17 2 1.6e-15 4
12 0.042 26 0.043 26 0.047 25
13 0.36 37 0.36 37 0.36 37
14 1.6e-15 4 0.0014 15 0.0042 15
15 0.094 30 0.1 30 0.11 30
16 0.15 31 0.16 31 0.17 31
17 0.16 32 0.17 32 0.18 32
18 7.7e-15 5 3.5e-10 14 3.1e-12 10
20 0.2 35 0.21 35 0.22 35
21 0.088 28 0.091 28 0.096 28
22 0.21 36 0.21 34 0.21 34
23 5.8e-13 8 3.4e-12 11 1.5e-10 13
24 0.085 27 0.088 27 0.091 27
26 1.3e-12 9 1.2e-16 3 1.7e-13 6
27 0.0041 16 0.016 18 0.034 20
30 0.19 33 0.19 33 0.19 33
31 3.3e-10 15 1.2e-12 10 7.2e-12 12
34 2.1e-10 14 3.8e-18 1 1.3e-15 3
36 0.013 18 0.024 21 0.053 26
37 4.1e-14 6 1.1e-12 9 4.8e-16 2
39 3.5e-13 7 7.2e-15 4 6.4e-13 9
41 2e-16 3 3e-13 8 5.1e-12 11
42 3.9e-11 12 1.3e-14 6 1.6e-13 5
43 0.014 20 0.023 20 0.034 21
45 9.7e-17 2 1.5e-14 7 2e-13 7
46 0.094 29 0.096 29 0.1 29
47 0.0082 17 0.012 16 0.012 16
48 0.031 24 0.035 24 0.039 22
49 3.3e-12 10 1.2e-14 5 4.1e-13 8

Table 6. Dynamic efficiency scores RCEk (J = 2) under degressive
and linear write-off
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a more general level, these empirical findings demonstrate the practical relevance
of our methodology for regulators: erroneously disregarding intertemporal aspects
of firms’ production decisions may substantially distort the efficiency assessment
and, therefore, also the policy conclusions that are drawn from it.

We see multiple possible extensions. First, we have been considering a multi-
output setting in the current paper but ignored any output interdependencies,
mainly to simplify our exposition. In practice, however, interdependencies among
outputs often exist in the form of joint inputs. From this perspective, it seems par-
ticularly interesting to combine our methodology for dynamic production analysis
with the (nonparametric) methodology for multi-output production analysis that
was recently developed by Cherchye et al. (2013, 2014). This multi-output frame-
work accounts for interdependencies between different output production processes
through jointly used inputs, which are formally similar in nature to the durable
inputs on which we focus in the current paper (i.e. they capture inter-period in-
terdependencies between production decisions). Combining the two methodologies
will further enhance the realistic modeling of production interdependencies (across
outputs as well as time periods).

Next, our cost and technical inefficiency measures can be used to measure pro-
ductivity by combining it with various productivity measures such as the cost
Malmquist index of Maniadakis and Thanassoulis (2004) or the Malmquist index
of Caves et al. (1982), Bjurek (1996)’s Hicks-Moorsteen index or the Luenberger
indicator of Chambers et al. (1996), among others. These productivity measures
have been proposed in the context of nonparametric (DEA) analysis of productive
efficiency and, therefore, are easily combined with our novel methodology. This
combination will lead to richer productivity analyses because it explicitly accounts
for intertemporal production interdependencies through storable and durable in-
puts.

Finally, Varian (1982) has developed a nonparametric approach to consumer
demand analysis that is formally analogous to the nonparametric approach to
production analysis to which we adhere here. Following this analogy, we may
translate the insights developed in the previous sections towards a consumption
setting, so to obtain a more realistic modeling of intertemporal aspects of consumer
behavior.18 Specifically, our concept of storable inputs corresponds to the notion of
infrequent purchases in a consumption context, and durable inputs are similar in
spirit to durable consumption goods (for example, cars, houses, etc.) in a demand
setting.
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Appendix A. The economic meaning of write-off schemes

In this short section we clarify the economic intuition behind the write-off
schemes for the durable inputs. For a moment, let us rewrite (1) by replacing
input requirement sets with production functions:

min
(q1

t ,...,q
J
t )

T
t=J

(P1
t ,...,P

J
t )

T
t=J

T∑
t=J

t∑
j=t−J+1

pk,jq
t−j+1
j + Pt−j+1

j Qk,j(21a)

s.t. Ft

(
J∑

j=1

qj
t−j+1,

J∑
j=1

Qk,t−j+1

)
≥ yk,t ∀t = J, . . . , T(21b)

The first order conditions with respect to Qk,t, for all t = J, . . . , T , are

J∑
j=1

Pj
k,t −

J∑
j=1

λt+j−1
∂Ft+j−1

∂Qk,t

≥ 0⇔ Pk,t −
J∑

j=1

λt+j−1
∂Ft+j−1

∂Qk,t

≥ 0,

which holds with equality if Qk,t > 0. Rearranging shows that, when a durable
input Qk,t is purchased at time t, the discounted market prices reflect the expected
marginal benefits to production of the durable inputs over their entire lifetime, i.e.

(22) Pk,t =
J∑

j=1

λt+j−1
∂Ft+j−1

∂Qk,t

,
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which reveals a write-off scheme that defines the valuation of the firm for durable
inputs in terms of their marginal effects on productivity in periods t to t+ J − 1.
It is as if the firm invests in this input and writes off this investment for J periods.
We capture this interpretation by (implicit) period-specific prices

(23) Pj
k,t = λj

∂Fj

∂Qk,t

.

Intuitively, these period-specific prices attribute part of the cost of the durable
inputs to different periods t in accordance to the inputs’ marginal productivities.
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