KU LIEUVEN

```
DEPARTMENT OF ECONOMICS
```

DISCUSSION PAPER SERIES DPS17.05

MARCH 2017

Addendum to: "Ranking opportunity sets on the basis of similarities of preferences: a proposal"

Luc LAUWERS, Tom POTOMS and Carmen VÁZQUEZ

Econometrics

Addendum to: "Ranking opportunity sets on the basis of similarities of preferences: A proposal"

Luc Lauwers ${ }^{1}$. Tom Potoms ${ }^{2}$. Carmen Vázquez ${ }^{3}$
${ }^{1}$ Center for Economic Studies, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
${ }^{2}$ European center for advanced research in economics and statistics, Université Libre de Bruxelles 42 Avenue Roosevelt, 1050 Brussels, Belgium
${ }^{3}$ Departamento de Matemáticas, Facultade de Economía, Universidade de Vigo, Campus Lagaos-Marcosende, 36310 Vigo, Spain
luc.lauwers@kuleuven.be, tom.potoms@ulb.ac.be, and cvazquez@uvigo.es.

March 3, 2017

Abstract

Vázquez (2014) proposes to rank opportunity sets on the basis of the similarities of the elements within each set. The ranking rule, denoted by $S L$, is lexicographic and takes into account the indirect utility, the number of elements that are similar to the best element, and finally

the utilities of representatives of subsequently lower similarity classes. This note corrects a gap in the characterization of this rule.

We recall the setup, argue that the rule $S L$ violates one of the axioms, propose a modified version of this axiom, and restore the characterization result.

The set X of alternatives is equipped with an asymmetric preference relation P. A non-empty subset of X is called an opportunity set, Z collects all opportunity sets, and \succsim is an ordering on Z. A similarity relation S on X induces a partitioning of the opportunity sets into homogeneous partition classes. As such, the opportunity set A partitions into

$$
A=A_{1} \cup A_{2} \cup \cdots \cup A_{k}
$$

with $A_{1} P A_{2} P \ldots P A_{k}$. Elements in the same partition class are sufficiently close (in terms of preferences). The best element of the homogeneous class A_{i} is denoted by a_{i}.

Axiom (S-C) introduces a three-clause similarity-composition condition. (S-C,a) considers four homogeneous opportunity sets A, B, C, D with $A \cap C=B \cap D=\varnothing$, $A \sim B, A P c_{1}, B P d_{1}$, and $a_{1} S d_{1}$; and imposes that $B \cup D \succsim A \cup C$. This axiom is used in the proof of Lemma 1 and of Theorem 1 (case 3).

We now argue that the rule $S L$ does not satisfy (S-C,a). Split up a large homogeneous set into two disjoint parts A and D with $A P D$ and $|D| \geq 2$. Let $B=A$ and $C=\left\{d_{1}\right\}$. Then, $c_{1}=d_{1}, A P c_{1}$, and $a_{1} S d_{1}$. According to (S-C,a), $B \cup D \succsim A \cup C$. The sets $A \cup C$ and $B \cup D$ are both homogeneous and have the same indirect utility (equal to
$\left.u\left(a_{1}\right)\right)$. According to $S L$, the smaller set $A \cup C$ is strictly better than $B \cup D=A \cup D$ (cf. Lemma 2). Conclude that $S L$ violates (S-C,a).

The following modified version (S-C, a^{*}) of ($\mathrm{S}-\mathrm{C}, \mathrm{a}$) restores the characterization result.
(S-C, a*). Let A, B, C, D be homogeneous, $D=\left\{d_{1}\right\}, A \cap C=B \cap D=\varnothing, A P c_{1}$, $B P d_{1}, A \sim B$, and $a_{1} S d_{1}$. Then, $B \cup D \succsim A \cup C$.

The rule $S L$ satisfies axiom (C-S, a*). We now reconsider the proofs of Lemma 1 and Theorem 1.

Lemma 1. Both (S-C,a) and (S-C, a*) turn the indifference $\left\{a_{1}\right\} \sim\left\{b_{1}\right\}$ into $\left\{a_{1}, \alpha_{2}\right\} \sim\left\{b_{1}, \beta_{2}\right\}$. No further changes are needed: continue the proof and conclude that homogeneous sets with the same indirect utility and the same cardinality are equally good.

Theorem 1 (case 3). Here, (S-C,a) is used to obtain that $B_{1} \cup\left\{b_{2}\right\} \succsim B$. In this case, however, the use of (S-C,a) can be avoided. We distinguish two cases.

Case 1. $B=B_{1} \cup\left\{b_{2}\right\}$. Then, $B_{1} \cup\left\{b_{2}\right\} \sim B$.
Case 2. B is a strict superset of $B_{1} \cup\left\{b_{2}\right\}$. Now, let $z \neq b_{2}$ be the worst (in term of preferences) element in B and let $B^{\prime}=B \backslash\{z\}$. Then, $B_{1}^{\prime}=B_{1}$. Lemma 3 entails $B_{1} \succ B^{\prime}$. Use ($\mathrm{S}-\mathrm{C}, \mathrm{c}$) with B_{1} (homogeneous), B^{\prime} (not homogeneous), $B_{1} \succ B^{\prime}, C=\left\{b_{2}\right\}$ (homogeneous and $B_{1} P C$), and $D=\{z\}$ (homogeneous and
$\left.B^{\prime} P z\right)$. Conclude that $B_{1} \cup\left\{b_{2}\right\} \succ B^{\prime} \cup\{z\}$.
Hence, in both cases, the desired conclusion $B_{1} \cup\left\{b_{2}\right\} \succsim B$ is obtained.

Independency (page 26, first column, bottom, item 1). The lexicographic ordering on Z satisfies (M). Indeed, for each pair a_{1} and a_{2} such that $a_{1} P a_{2}$, the vector $\left(u\left(a_{1}\right), 2\right)$ dominates $\left(u\left(a_{1}\right), u\left(a_{2}\right)\right)$ (as all utilities belong to the [0, 1]-interval). Hence, this rule does not entail that (M) is independent of the other axioms.

Here, we propose to consider the set $X=\{x, y\}$ with $x P y$. The ordering \succsim, defined by $\{x\} \sim\{x, y\} \succ\{y\}$, violates (M) and satisfies the other three axioms. Alternatively, one can change the value 2 (used to expand the vector of utilities) into 0 and use the lexicographic ordering.

Reference

Vázquez C (2014) Ranking opportunity sets on the basis of similarities of preferences: a proposal. Mathematical Social Sciences 67, 23-26.

Copyright © 2017 @ the author(s). Discussion papers are in draft form. This discussion paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author.

