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Abstract

We propose a novel approach to model joint consumption decisions of individ-
uals who care for each other. We assume noncooperative interaction between the
different individuals and the within-group consumption outcome critically depends
on the degree of caring between the group members. By varying the degree of car-
ing, the model encompasses a whole continuum of group consumption models that
are situated between the fully cooperative model (assuming a Pareto optimal out-
come) and the noncooperative model without caring (assuming a public good game
with voluntary contributions). This feature is used to define a measure for the de-
gree of cooperation within the group, which quantifies how close the observed group
behavior is to the fully cooperative benchmark. We also establish a dual characteri-
zation of our noncooperative model with caring preferences: we show that the model
is dually equivalent to a noncooperative model with non-caring preferences that is
characterized by intra-group transfers. Following a revealed preference approach, we
derive testable implications of the model for empirical data. Finally, we also use our
model to analyze decisions made by dyads of children in an experimental setting. We
find considerable heterogeneity in the degree of caring (or cooperation) across dyads,
which correlates with assertiveness and the degree of interaction within dyads.
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1 Introduction

In many instances of group consumption, it is natural to assume that group members care
for each other. A prime example is the household consumption context, but there are
many other joint decisions (e.g. between family members, friends, ...) for which the caring
assumption is an obvious one. In the present paper, we propose a novel consumption model
that allows for various degrees of caring between group members. It uses the Beckerian
specification of caring preferences (which have also been referred to as altruistic preferences
by Becker (1981)). To model the decision process, we assume that there is noncooperative
interaction between group members, which means that the intra-group decision process
yields intra-group allocations that are Nash equilibria.

Noncooperation versus cooperation. The assumption of noncooperative intra-group
interaction has strong theoretical appeal. In particular, any Nash equilibrium is stable
in the sense that no group member can increase her/his utility by unilaterally changing
her/his strategy. Moreover, using a backward induction argument, one can show that this
stability property remains even if we allow for finitely repeated interaction.

The assumption of Nash equilibrium behavior is an obvious one in the context of multi-
person group interaction. Particularly, it has been used for modeling the consumption
behavior of multi-member households.1 A common feature of these existing studies is that
they exclude intra-group caring, i.e. the consumption allocation is a Nash equilibrium
defined in terms of non-caring preferences. In a consumption setting with both privately
and publicly consumed goods, this implies a Nash equilibrium with individuals voluntarily
contributing to the public goods. It is well known that, in this case, the resulting level of
public goods is generally below the Pareto efficient level.

However, this noncooperative approach also has some deficiencies. First of all, it is
frequently unrealistic to assume that group members only care about their own wellbeing.
This calls for including caring preferences. Second, group consumption behavior is often
likely to overcome free-rider problems associated with public consumption –at least to
some extent. Specifically, one may expect that repeated interaction and (nearly) perfect
information increase the probability that household members develop welfare enhancing
mechanisms to overrule such problems.

At the other extreme, the fully cooperative model assumes that group members reach
a Pareto-optimal allocation, i.e. no group member can increase her/his utility without
decreasing the utility of any other member. This has become the workhorse model for
the empirical analysis of multi-member household behavior.2 But the relevance of the

1See, for example, Leuthold (1968), Bourguignon (1984), Ulph (1988), Kooreman and Kapteyn (1990),
Browning (2000), Chen and Woolley (2001), Lechene and Preston (2005, 2011), Browning, Chiappori and
Lechene (2010), Cherchye, Demuynck and De Rock (2011), Boone, van der Wiel, van Soest and Vermeulen
(2014) and Flinn, Todd and Zhang (2017).

2See, for example, Apps and Rees (1988), Chiappori (1988, 1992), Browning and Chiappori (1998),
Chiappori and Ekeland (2006, 2009) and Cherchye, De Rock and Vermeulen (2007, 2011). Following
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cooperative model has also been advocated in alternative settings of multi-member group
consumption (such as committees, clubs, villages and other local organizations).3 The
premise of efficient behavior can be defended in three ways (see, for example, Browning and
Chiappori (1998)). First of all, under perfect information and with repeated interactions
Pareto optimal allocations can be stable as long as all members are sufficiently patient.
Second, the Pareto outcome is seen as a most natural generalization for multi-member
groups of the assumption of utility maximization in a single agent context. Finally, Pareto
efficiency is widely used as an assumption in cooperative bargaining models.4 In this
sense, Pareto optimality is a minimal condition that should be satisfied if the intra-group
bargaining process is based on such a cooperative solution concept.

Although we largely agree with these arguments, we also believe that there remains
scope for relaxing the efficiency condition. First of all, it is well known that, unless the
Pareto optimal allocation exactly coincides with a Nash equilibrium, the cooperative Pareto
efficient outcome is not self enforcing. In other words, there will usually be some group
member(s) who can increase utility by unilaterally deviating from the Pareto optimal al-
location. Second, even if we are in a situation with infinitely repeated interaction, the folk
theorem shows that almost every allocation situated between the noncooperative Nash
outcome and the Pareto efficient outcome could be stable. In other words, (infinitely)
repeated interaction does not necessarily lead to efficient behavior. Finally, the Pareto effi-
ciency assumption has been questioned for the publicly consumed goods. Most notably, it
has been argued that the informational requirement and the resulting cost of implementing
cooperation may often be unrealistic.

Summarizing, while the fully cooperative model might represent an overly optimistic
outlook of group decision processes, we may also argue that the noncooperative model
without caring is too pessimistic. Indeed, it appears to us that most group interactions are
to be found somewhere between the cooperative and noncooperative benchmarks. In any
event, these considerations make it relevant to assess how close the observed consumption
behavior is to the fully cooperative benchmark, that is, to evaluate the degree of intra-group
cooperation.

Noncooperation with caring. In the following sections, we will present a model of
group consumption behavior that encompasses situations between the extreme cases of
full cooperation and noncooperation without caring. Formally, our model is equivalent to
a noncooperative model where group members have Beckerian caring preferences: each
individual optimizes a function that is increasing in the utilities of all group members.5

In this set-up, we will derive specific testable restrictions for empirical data. Interestingly,
we will also demonstrate that it is possible to empirically recover a measure for the degree

Chiappori (1988, 1992), the consumption literature often refers to the cooperative model as the ‘collective’
model of household behavior.

3See, for example, Chiappori and Ekeland (2006).
4See Manser and Brown (1980), McElroy and Horney (1981) and Lundberg and Pollak (1993) for

applications of bargaining models in a household setting.
5In this respect, it is also worth referring to Browning and Lechene (2001), who adopt a similar approach

to investigate the relationship between expenditures (on private and public goods) and the intra-group
distribution of income.
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of intra-group cooperation which, as we will explain, actually captures caring within the
group.

Thus, by introducing caring in the noncooperative framework, our model allows us to
combine some attractive properties of the polar cooperative and noncooperative models. At
the same time, it solves two main problems associated with these two benchmark models.
First of all, as it is based on the concept of a noncooperative Nash equilibrium, it is self
enforcing and, hence, stable. Second, by introducing caring between the group members,
we depart from the assumption that these members are inherently egoistic (i.e. non-caring).
Caring preferences allow for friendship, altruism, love and trust between group members.
We believe this assumption to be much more realistic in many group decision situations,
where these emotions often do play an important role.

At this point, two remarks are in order. First, it has been demonstrated by Chiap-
pori (1992) that purely egoistic preferences are empirically indistinguishable from caring
preferences in the fully cooperative model: the two specifications of individual preferences
have exactly the same testable implications under the maintained assumption of Pareto
efficient group consumption behavior. In turn, this implies that the caring model (relative
to the egoistic model) does not have specific testable implications.6 By contrast, as we will
argue below, caring preferences do have specific testable implications under the assump-
tion of noncooperative group consumption. As a matter of fact, we will show that it is
possible to empirically distinguish a continuum of models characterized by varying degrees
of intra-group caring.

Second, d’Aspremont and Dos Santos Ferreira (2014, 2017) provide an alternative group
consumption model that is situated between the fully cooperative and the noncooperative
model. A most important difference with our model is that these authors model ‘semicoop-
erative’ behavior by parameterizing the trade-off between an individual budget constraint
and the group budget constraint (which evaluates the public goods at Lindahl prices). By
contrast, the distinguishing feature of our approach is that it combines caring preferences
with noncooperative intra-group interaction for modeling the group decision behavior. As
motivated above, we believe that accounting for caring preferences is often particularly
relevant in the context of joint consumption decisions.

Other contributions. Our consumption model has a number of specific features that
are particularly attractive from a theoretical and/or practical perspective. First of all, as
indicated above, it allows us to define a measure of intra-group caring that can also be
interpreted as quantifying the degree of within-group cooperation. Specifically, we show
that it is possible to quantify and estimate the degree of caring within the group; and this
gives us an operational measure for the magnitude of intra-group cooperation.

Another interesting feature of our model pertains to its dual representation. Specifically,
we will show that the noncooperative model with caring preferences is dually equivalent to
a noncooperative model with non-caring preferences that is characterized by intra-group
transfers. In fact, the intra-group transfers in the dual model will be directly related to

6In this respect, Bruyneel, Cherchye, Cosaert, De Rock and Dewitte (2017) show that consumption
externalities do have specific testable implications under Pareto efficiency if they are associated with
individual commodities consumed by other individuals in the group (rather than with the aggregate well-
being/utility of the individuals, as in the Beckerian specification of caring preferences).
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the above mentioned measure of intra-group cooperation. This duality result parallels
the well-known duality between a Pareto optimal allocation and the Lindahl equilibrium,
which is often used to provide a decentralized representation for the fully cooperative
(Pareto efficient) model of group consumption. As such, we obtain a similar decentralized
representation for our newly proposed model.

A further important aspect of our model relates to its empirical applicability. We
will show that, although our newly proposed model generalizes the fully cooperative and
noncooperative models, it does have useful testable implications for empirical data. To
this end, we present a revealed preference characterization of the model in the tradition
of Afriat (1967) and Varian (1982): we derive necessary and sufficient conditions for the
empirical validity of our model that can be checked by solely using a finite set of observed
group consumption bundles and corresponding prices.7

Finally, we also demonstrate the practical usefulness of these revealed preference con-
ditions by means of an empirical application, which analyzes decisions made by dyads of
children in an experimental setting. We will observe considerable differences in the de-
gree of cooperation across the dyads in our data set. By quantifying this variation by
our measure of intra-group cooperation/caring, we can then relate it to observable dyad
characteristics. It will appear that particularly the degree of assertiveness and intra-dyad
friendship are positively correlated with cooperative behavior, whereas average social skills
can not be linked to the degree of intra-group caring.

Outline. The rest of this paper unfolds as follows. Section 2 formally defines our the-
oretical model of noncooperative group consumption with caring individuals. Section 3
develops its dual (decentralized) representation. Section 4 introduces the testable revealed
preference implications of our model. Section 5 presents our empirical application to dyads
of children. Section 6 concludes.

2 A noncooperative model with caring preferences

We consider a group with two members, A and B.8 The group decides over the purchase
of a bundle of N private goods, denoted by q ∈ RN

+ , and a bundle of K intra-group public
goods, denoted by Q ∈ RK

+ . We remark that this assumes that each good is either private
(in q) or public (in Q). Further, it excludes externalities associated with privately consumed
quantities. Importantly, however, our setting can actually account for such externalities.
Specifically, if an individual is the exclusive consumer of a particular private good, then
we can account for externalities for this good by formally treating it as a public good.
Throughout, we will treat the first private good as a numeraire and we will assume that
the consumption of the numeraire and all public goods is strictly positive in all group

7See also Samuelson (1938), Houthakker (1950) and Diewert (1973) for seminal contributions to the
revealed preference approach to modeling (in case single agent) consumption behavior.

8This focus on two-member groups is mainly to keep the exposition simple. Also, our empirical appli-
cation in Section 5 will consider an experimental setting with two-person groups. At this point, however,
it is worth emphasizing that our following analysis can readily be extended to groups with more than two
members.
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equilibria.9

In what follows, we will first formalize our assumptions regarding the preferences and
the strategies of the group members. Subsequently, we will formally define and characterize
the group equilibrium in terms of our model.

Preferences. Our analysis starts from a set of decision situations T . In each situation
t, the group faces a price vector pt ∈ RN

++ for the private goods, a price vector Pt ∈ RK
++

for the public goods, and a group income Yt ∈ R++. In addition, members A and B are
endowed with situation-dependent concave and increasing (Beckerian) caring functions.
We denote these functions by WA

t (UA, UB) and WB
t (UB, UA); in this construction, UA

and UB stand for ‘egoistic’ utility functions which (only) depend on the members’ own
consumption of private goods (qA and qB) and the total amount of public goods (Q), i.e.
UA = UA(qA, Q) and UB = UB(qB, Q). Of course, the vectors representing the individual
consumption of the private goods should add up to the total group consumption of these
goods, i.e. qA + qB = q. In contrast to the caring functions WA

t and WB
t , we assume that

the utility functions UA and UB are stable (invariant) across all decision situations t in
T . Indeed, if these functions were also situation-dependent, then our model would have
no testable implications. Further, we will assume that utility functions UA and UB are
continuous, concave, non-satiated and non-decreasing in their arguments.

An important feature of our model is that the caring functions WA
t and WB

t are
situation-dependent. This is a natural assumption in a consumption framework with
interacting individuals. Specifically, it reflects the idea that the degree of caring or al-
truism between group members might depend on several (situation-dependent) exogenous
variables.10 These exogenous variables come in two kinds. On the one hand, exogenous
variables may influence the decision process within the group. In a household context, ex-
amples of such variables are the state of the marriage market, the state of the labor market,
the specific divorce laws and the social attitudes to the roles of men and women within the
household. On the other hand, exogenous variables may impact on the emotional state of
the group members. Examples of such variables are the amounts of love, friendship, com-
passion and trust within the group. Both kinds of variables may have a strong influence on
the shape of the caring functions. Taking the caring functions to be situation-dependent
allows the model to adapt to a change in each of these (often unobserved) variables.

In what follows, we will make one additional assumption to facilitate our technical
analysis. Specifically, we use a single crossing (SC) property:

Assumption SC: For all decision situations t, qA, qB ∈ RN and Q ∈ RK
+ , for U

A
=

9We can relax this assumption by using suitable Lagrange multipliers, but this would only increase
notational complexity without adding new insights. In fact, our own empirical application in Section 5
will consider data sets with some components of the public goods equal to zero.

10Compare with the discussion in Browning, Chiappori and Lechene (2006). These authors consider
(situation-dependent) aggregation of preferences in a cooperative framework. In a household consumption
context, the situation-specific exogenous variables are analogous to the so-called extra-environmental pa-
rameters in the terminology of McElroy and Horney (1981) or distribution factors in the terminology of
Browning, Bourguignon, Chiappori and Lechene (1994).
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UA(qA, Q) and U
B

= UB(qB, Q), we have that either

∂WA
t

∂UB

∣∣∣∣(
U

A
,U

B
) = 0,

or,

−
∂WA

t

∂UA

∂WA
t

∂UB

∣∣∣∣∣(
U

A
,U

B
) ≤ −

∂WB
t

∂UA

∂WB
t

∂UB

∣∣∣∣∣(
U

B
,U

A
) .

The left hand side of the last inequality provides the amount of utility UA that A is
willing to subsume to compensate a one unit increase in UB. In other words, it gives the

slope of the indifference curve of the function WA
t in R2 space through the point (U

A
, U

B
),

i.e. the marginal rate of substitution between UA and UB. Assumption SC states that,

for every combination of utilities U
A

and U
B

, the slope of the indifference curve for WA
t

through this point is steeper than the slope of the indifference curve of WB
t through this

point. Intuitively, this single crossing condition implies that, when compared to member
B, member A gives at least the same weight to her own utility UA as to the utility of
the other member UB. Symmetrically, B gives relatively more weight to UB than to UA

in comparison to A. We believe this to be an intuitively plausible assumption. Observe
that Assumption SC is entirely ordinal. In other words, it is insensitive to any monotonic
transformation of WA

t ,W
B
t , U

A or UB.

Strategies. In order to combine noncooperation and caring in one and the same formal
model, we make the following assumption regarding the group members’ strategies. At
every decision situation t, each group member decides on three bundles: member A chooses
the private bundles qA,A

t , qA,B
t ∈ RN

+ and the public bundle QA
t ∈ RK

+ ; and, similarly,

member B chooses qB,B
t , qB,A

t ∈ RN
+ and QB

t ∈ RK
+ . We interpret this as follows: the

bundle qA,A
t is the bundle of private goods that member A buys for herself, qA,B

t is the
bundle of private goods that A buys for the other member B, and QA

t is the contribution
to the bundle of public goods purchased by A. The meaning of qB,B

t , qB,A
t and QB

t is directly
analogous. Of course, we must have qA,A

t +qB,A
t = qAt , qB,B

t +qA,B
t = qBt and QA

t +QB
t = Qt.

It is standard in the literature on noncooperative group behavior to explicitly distin-
guish between A and B’s contribution to the group’s public consumption (for example,
Lechene and Preston (2005, 2011), and d’Aspremont and Dos Santos Ferreira (2014) make
similar distinctions). However, the fact that we allow A and B to buy private goods for
each other may seem a bit unconventional. In most models (of noncooperative behavior)
it is assumed that members only buy private goods for themselves, i.e. A chooses qAt and
B chooses qBt . Our distinction between qM,M

t and qM,L
t (for M,L ∈ {A,B}, M 6= L) di-

rectly relates to the specificity of our model, i.e. it accounts for caring preferences in a
noncooperative setting.

Let us explain this last point in some more detail. In a noncooperative model without
caring preferences, it seems intuitive that individual members will not buy private goods
for the other. By contrast, in the case of intra-group caring, one group member may well
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benefit from increasing the private consumption of the other member. Our distinction
between qM,M

t and qM,L
t exactly takes this into account.11

Equilibrium. We will first introduce our new concept of group equilibrium in general
terms. Subsequently, we will show that the concept encompasses the fully cooperative
equilibrium and the noncooperative equilibrium without caring as limiting cases. This
demonstrates the generality of our model. Furthermore, it will enable us to interpret our
measure of intra-group caring as quantifying the degree of within-group cooperation, i.e.
the measure allows us to distinguish between different consumption models characterized
by different of degrees of cooperation.

We assume that in equilibrium both members maximize their caring functions given
the decisions of the other members, i.e. we assume a noncooperative Nash equilibrium.
More formally, at decision situation t, member A solves the following optimization problem
(OP-A):

(qA,A
t , qA,B

t , QA
t ) = arg max

(qA,A,qA,B ,QA)

WA
t (UA(qA, Q), UB(qB, Q))

s.t. p′t(q
A + qB) + P ′tQ ≤ Yt,

qA,A + qB,A
t = qA,

qA,B + qB,B
t = qB,

QA +QB
t = Q.

Similarly, B solves (OP-B):

(qB,B
t , qB,A

t , QB
t ) = arg max

(qB,B ,qB,A,QB)

WB
t (UB(qB, Q), UA(qA, Q)),

s.t. p′t(q
A + qB) + P ′tQ ≤ Yt,

qA,A
t + qB,A = qA,

qA,B
t + qB,B = qB,

QA
t +QB = Q.

An allocation that solves both problems simultaneously is called a group equilibrium with
caring.

Definition 1 An allocation {qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t } is a group equilibrium with

caring if and only if it simultaneously solves OP-A and OP-B.

Our new model enables us to define a measure of intra-group caring. To formalize this
idea, let ∂UM(qM , Q)/∂qM1 represent the marginal utility of the numeraire (i.e. the first

11Browning, Chiappori and Lechene (2010) suggest a similar idea in the context of a noncooperative
model with one private good and one public good, where one individual has caring preferences while the
other individual is egoistic. In fact, a similar mechanism also underlies Becker’s rotten kid theorem.
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private good) for member M ∈ {A,B} at the allocation {qM , Q}. Then, for a public good
k we define12

τMk (qM , Q) ≡

∂UM

∂Qk

∂UM

∂qM1

∣∣∣∣∣∣∣∣
(qM ,Q)

.

In words, the function value τMk (qM , Q) gives member M ’s marginal willingness to pay
(MWTP) for an additional unit of k at {qM , Q}. We can now derive the following result.
(The proofs of our main results are given in Appendix A.)

Proposition 1 Let {qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t } be a group equilibrium with caring.

Then, there exist numbers θAt , θ
B
t ∈ [0, 1] such that for all public goods k:

max

{
τAk (qAt , Qt) + θBt τ

B
k (qBt , Qt);

τBk (qBt , Qt) + θAt τ
A
k (qAt , Qt)

}
= Pt,k.

It follows from the proof of this proposition that the values of the indices θAt and θBt are
determined by the curvatures of the caring functions WA

t and WB
t at equilibrium, which

actually capture the degree of intra-group caring.13 Assumption SC guarantees that θAt
and θBt are both contained in the unit interval. In the next section, we will use the dual
representation of our consumption model to provide a specific equilibrium interpretation
for the equality condition in Proposition 1.

To further enhance the intuition of our newly proposed model, we consider the two
natural benchmark cases, i.e. the fully cooperative model and the noncooperative model
without caring. In terms of Definition 1 (and problems OP-A and OP-B), if the caring
functions WA

t and WB
t coincide (i.e. WA

t = WB
t = Wt), then both members optimize the

same objective function. By construction, this implies a cooperative equilibrium (i.e. a
Pareto optimal intra-group allocation). In this case, the caring function Wt corresponds
to a so-called generalized (Samuelson) group welfare function (see, for example, Apps
and Rees (2009)). By varying Wt, any Pareto efficient allocation can be reached as a
group equilibrium with caring. By contrast, if the caring functions reduce to ‘egoistic’
functions (i.e. WA

t (UA, UB) = UA and WB
t (UB, UA) = UB), then the group equilibrium

12Throughout, we use
∂UM

∂qMn
for the partial derivative of the utility function UM with respect to the

consumption quantity of the private good n, and
∂UM

∂Qk
for the partial derivative of the function UM

associated with the quantity of the public good k.

13Formally, we have θAt =

(
∂WB

t

∂UA

/
∂WB

t

∂UB

)(
∂UA

∂qA1

/
∂UB

∂qB1

)
and θBt =(

∂WA
t

∂UB

/
∂WA

t

∂UA

)(
∂UB

∂qB1

/
∂UA

∂qA1

)
, where all partial derivatives are evaluated at the allocation

{qAt , qBt , Qt}. In words, θAt equals the ratio of member B’s marginal valuation for a unit increase
of the numeraire quantity for member A (which enters the caring function WB

t through UA) relative to
his marginal valuation for the same increase of the numeraire quantity for his own (which enters WB

t

through UB). Likewise, the variable θBt equals the ratio of A’s marginal valuation for a unit increase of
the numeraire quantity for B relative to her marginal valuation for the same quantity increase for her
own.
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reduces to a noncooperative equilibrium without caring (i.e. a standard public good game
with voluntary contributions). Our model is general in that it also captures all possible
equilibrium situations between the fully cooperative equilibrium and the noncooperative
equilibrium without caring.

Using the same two benchmark models, we can effectively interpret the indices θAt and
θBt in Proposition 1 as capturing the degree of cooperation at the equilibrium intra-group
allocation. First, in a cooperative equilibrium the MWTP functions τMk coincide with the
so-called Lindahl prices. In particular, it is well known that any Pareto efficient alloca-
tion {qAt , qBt , Qt} must satisfy the Lindahl-Bowen-Samuelson conditions (see, for example,
Samuelson (1954)). And, thus, we get for each public good k:

τAk (qAt , Qt) + τBk (qBt , Qt) = Pt,k.

In words, the sum of the members’ MWTP must sum to the market prices. This case
coincides with θAt = θBt = 1 in Proposition 1.

We next turn to the noncooperative model. In this case we get the following equilibrium
condition for every public good k:

max

{
τAk (qAt , Qt),
τBk (qBt , Qt)

}
= Pt,k;

see, for example, Cherchye, Demuynck and De Rock (2011). Thus, this case corresponds
to θAt = θBt = 0 in Proposition 1.

More generally, if the indices θAt and θBt are closer to unity, the group will behave more
as in the cooperative model. The duality result in Section 4 will provide an additional
interpretation of θAt and θBt as quantifying the degree of intra-group cooperation of each
member. In Section 5 we will show that it is possible to empirically recover the values of θAt
and θBt . In this respect, we also note that max{θAt , θBt } < 1 implies (because of Proposition
1)

τAk (qAt , Qt) + τBk (qBt , Qt) > Pt,k,

which reveals Pareto inefficient behavior. As such, θAt and θBt also indicate the extent of
Pareto (in)efficiency at each decision situation t.

As a final remark, we note that the values of θAt and θBt are situation-dependent in
the general version of our model. In practice, one may impose θAt = θA and θBt = θB for
all t, which thus assumes a constant degree of intra-group cooperation over all decision
situations. Again, this encompasses the fully cooperative model (with θA = θB = 1)
and the noncooperative model without caring (with θA = θB = 0) as limiting cases. As a
specific illustration, we will consider such constant intra-group cooperation in our empirical
application in Section 5.

3 A duality result

The second fundamental theorem of welfare economics provides one of the most impor-
tant theoretical insights related to the concept of Pareto efficiency. Specifically, provided
that some regularity conditions are satisfied, any Pareto optimal allocation can be dually
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characterized in terms of a suitable income distribution and by making use of individual
Lindahl prices for the publicly consumed goods (see, for example, Bergstrom (1976)). This
dual characterization of Pareto optimality has often been used to provide a decentralized
two-stage representation of the fully cooperative model of group consumption: in the first
stage, the group divides the total income over the group members; in the second stage,
each individual member chooses a consumption allocation that maximizes her/his utility
subject to the personalized budget constraint defined in the first stage.

In this section, we will develop a similar duality result for the noncooperative model
with caring preferences that we introduced above: we will show that this model is dually
equivalent to a noncooperative model with non-caring preferences that is characterized
by intra-group transfers. The magnitude of these transfers will be directly related to
the MWTP functions τAk and τBk and the indices θAt and θBt introduced in the previous
section. In turn, this duality result implies a decentralized representation of the model
that contains two stages. As we will explain, this representation will provide a further
motivation to interpret θAt and θBt as measuring the degree of intra-group cooperation.

Before formally stating the duality result, we first explain the two stages of the noncoop-
erative group model with transfers. In the first stage, the total group income Yt is divided
between A and B, which defines the individual incomes Y A

t and Y B
t (with Y A

t +Y B
t = Yt).

Here, we abstract from explicitly modeling this first step. Similar to our treatment of
caring functions in the previous section, this intra-group income distribution can be seen
as a function of situation-dependent exogenous variables. The idea of an intra-group in-
come distribution resembles the so-called ‘sharing rule’ concept that applies to the fully
cooperative model: in the decentralized representation of this model, the sharing equally
defines the within-group income distribution underlying the (in casu Pareto efficient) group
consumption decisions.14

In the second stage of the allocation process, each group member M (= A or B)
decides on the optimal level of her/his own private consumption and the own contribution
to the level of public goods, by maximizing her/his own utility UM(qM , Q) subject to a
personalized budget constraint defined by the individual income. In doing so, the individual
faces the price vectors pt and Pt for her/his choice of private consumption qMt and public
contribution QM

t . In addition, each individual receives a transfer from the other individual
per unit of public good that she/he purchases. We denote these transfers for each public
good k by σA

t,k and σB
t,k; σA

t and σB
t represent the corresponding vectors of intra-group

transfers.
There are at least two interpretations for these intra-group transfers related to public

goods. First, one can see these transfers as voluntary contributions: as B benefits from the
purchase of QA

t,k, it may be the case that she/he is willing to contribute to the purchase

14In fact, Chiappori (1988, 1992) originally introduced this sharing rule concept for the model without
public goods. In the literature on the cooperative model, a refinement of the concept that accounts for
public goods is the so-called ‘conditional’ sharing rule. This concept captures how the group shares the
income to be spent on private consumption for the given level of public consumption; see, for example,
Blundell, Chiappori and Meghir (2005) for discussion. As such, this first step income distribution concept
is not fully comparable to ours, which is not conditional on the level of public consumption. See also
Cherchye, De Rock, Lewbel and Vermeulen (2015) for a more general sharing rule concept that accounts
for public consumption under cooperative behavior, which is close in spirit to the sharing idea associated
with the dual representation of our caring model.
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of this bundle. Next, one can also interpret them as representing an implicit tax that B
has to pay for the benefit of receiving QA

t,k. Both interpretations express that intra-group
transfers (i.e. a given specification of σA

t and σB
t ) refer to the degree of (voluntary or

obligatory) cooperation within the group.
Summarizing, at each decision situation t, member A faces the following dual optimiza-

tion problem (DOP-A):

{qAt , QA
t } ∈ arg max

qA,QA
UA(qA, QA +QB

t ),

s.t. p′tq
A +

(
Pt − σB

t

)′
QA + σA′

t Q
B
t ≤ Y A

t .

Similarly, B solves (DOP-B):

{qBt , QB
t } ∈ arg max

qB ,QB
UB(qB, QB +QA

t ),

s.t. p′tq
B +

(
Pt − σA

t

)′
QB + σB′

t Q
A
t ≤ Y B

t .

It is easy to see that the two budget constraints add up to the group budget constraint at
equilibrium (i.e. p′tqt + P ′tQt ≤ Yt).

Importantly, the noncooperative model under study does not explicitly consider caring
preferences: in contrast to the model discussed in the previous section, the problems DOP-
A and DOP-B do not include the caring functions WA

t and WB
t but only use the ‘egoistic’

functions UA and UB. However, as we will explain, our following concept of a group
equilibrium with transfers accounts for caring preferences in an indirect way.

Definition 2 An allocation {qAt , qBt , QA
t , Q

B
t } is a group equilibrium with transfers if and

only if it simultaneously solves DOP-A and DOP-B and, in addition, there exist θAt and
θBt such that for all public goods k:

σA
t,k = θAt τ

A
k (qAt , Qt) and σB

t,k = θBt τ
B
k (qBt , Qt).

In this definition, an equilibrium allocation requires that each member M ’s intra-group
transfer related to public good k (σM

t,k) is proportional to M ’s MWTP for k (τMk (qMt , Qt)).
The factor of proportionality is giving by the index θMt . Definition 2 establishes a direct link
between the noncooperative model with caring introduced in the previous section (with
problems OP-A and OP-B) and the two-stage allocation process discussed here (with
problems DOP-A and DOP-B). In the previous section, we argued that the curvatures
of the caring functions WA

t and WB
t define θAt and θBt . As such, the condition on the

intra-group transfers in Definition 2 indirectly incorporates caring preferences in the group
equilibrium under consideration.

Interestingly, Definition 2 provides an additional interpretation of each index θMt in
terms of intra-group cooperation. Given member M ’s MWTP for the public good k
(τMk (qMt , Qt)), θ

M
t captures the transfer M is willing to give to the other member L (L 6= M)

if L purchases an additional unit of good k. In the fully cooperative case, M is willing to
donate the full amount τMk (qBt , Qt) to L, which means θMt = 1. In this case, Definition 2
coincides with the standard definition of a Lindahl equilibrium. By contrast, in the non-
cooperative case without caring, M will not donate anything to L, so that θMt = 0. Now,
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Definition 2 reduces to the usual definition of a noncooperative equilibrium without caring.
Apart from these fully cooperative and noncooperative cases, Definition 2 also includes the
intermediate case in which M picks a number θMt between 0 and 1 such that she/he donates
a fraction θMt of τMk (qMt , Qt) to L. Generally, a higher (lower) θMt means that M is willing
to cooperate more (less) with L.

Using Definition 2, we get the following first order conditions for DOP-A and DOP-B
with respect to the public good k:

max

{
τAk (qAt , Qt) + θBt τ

B
k (qBt , Qt);

τBk (qBt , Qt) + θAt τ
A
k (qAt , Qt)

}
= Pt,k.

This condition is identical to the equilibrium condition in Proposition 1. However, the
underlying interpretation is different, because we now start from the optimization problems
DOP-A and DOP-B rather than OP-A and OP-B.

By considering θAt and θBt as capturing intra-group transfers, we can provide an intuitive
equilibrium interpretation to the above equality condition. To see this, let us consider the
two possible inequality situations. First, if

τAk (qAt , Qt) + θBt τ
B
k (qBt , Qt) > Pt,k,

then the total amount that A is willing to spend for an additional unit of public good k
(i.e. A’s MWTP plus the fraction θBt of B’s MWTP) exceeds the price A has to pay (i.e.
Pt,k). In this case, A will effectively increase her holdings of good k. A directly analogous
interpretation applies to the situation,

τBk (qBt , Qt) + θAt τ
A
k (qAt , Qt) > Pt,k.

And, thus,

max

{
τAt (qAt , Qt) + θBt τ

B
t (qBt , Qt);

τBt (qBt , Qt) + θAt τ
A
k (qAt , Qt)

}
> Pt,k,

implies a disequilibrium. Similarly, if we have

max

{
τAk (qAt , Qt) + θBt τ

B
k (qBt , Qt);

τBk (qBt , Qt) + θAt τ
A
k (qAt , Qt)

}
< Pt,k,

then either A or B (whoever contributes positively to good k) will want to decrease her/his
contribution to k. Again, this implies a disequilibrium situation.

We are now in a position to establish the dual equivalence result mentioned above.
Specifically, the following proposition implies that the model with caring and the model
with transfers are empirically indistinguishable.

Proposition 2 Let UA and UB be a pair of utility functions. Then, the following holds
for any decision situation t:

1. Suppose {qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t } is a group equilibrium with caring.

Then, there exist individual incomes Y A
t and Y B

t (with Y A
t + Y B

t = Yt) and indices
θAt and θBt such that {qAt , qBt , QA

t , Q
B
t } is a group equilibrium with transfers.
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2. Suppose {qAt , qBt , QA
t , Q

B
t } is a group equilibrium with transfers.

Then, there exist caring functions WA
t and WB

t and bundles qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t

(with qAt = qA,A
t + qA,B

t , qBt = qB,A
t + qB,B

t and Qt = QA
t +QB

t ) such that {qA,A
t , qA,B

t ,
qB,B
t , qB,A

t , QA
t , Q

B
t } is a group equilibrium with caring.

4 Testable implications

So far we have focused on the theoretical properties of our model with caring (or, equiv-
alently, with transfers). In this section, we show that the model has useful testable im-
plications for empirical data. Specifically, we will focus on testable conditions in terms
of revealed preferences. This revealed preference approach has been successfully applied
for empirical analysis of group consumption models: Cherchye, De Rock and Vermeulen
(2007, 2011) focus on the cooperative model and Cherchye, Demuynck and De Rock (2011)
on the noncooperative model without caring. In addition, recent methodological advances
of Blundell, Browning and Crawford (2003, 2008) and Cherchye, De Rock, Lewbel and
Vermeulen (2015) greatly enhanced the empirical usefulness of this revealed preference
approach.

In the consumption literature, empirical studies usually build on a differential char-
acterization (rather than a revealed preference characterization) of consumption models.
The specific feature of this differential approach is that it focuses on properties of func-
tions representing consumption behavior (e.g. cost, indirect utility and demand functions),
whereas the revealed preference approach (only) uses a finite set of group consumption
observations.15 In this respect, Cherchye, Demuynck and De Rock (2011) point out that
the revealed preference approach has some attractive features as compared to the more
common differential approach for analyzing group consumption behavior. Most notably,
contrary to existing results for the differential approach, the revealed preference character-
ization of the noncooperative model (without caring) is independent from (or non-nested
with) the characterization of the cooperative model: a set of observations that satisfies the
cooperative conditions does not necessarily satisfy the noncooperative conditions, and vice
versa. More generally, this implies that models characterized by different degrees of intra-
group cooperation (or caring) are independent of each other in terms of their revealed
preference characterization. Clearly, this independence makes it interesting to compare
the empirical validity of the different models. This is particularly relevant in the present
context, as our empirical application in the next section will carry out such a comparison.

Revealed preference characterization. We start from a finite set T of observed deci-
sion situations (or ‘observations’), i.e. S = {pt, Pt, qt, Qt}t∈T . We remark that this implies

15The term ‘differential’ refers to the fact that the characterization is obtained by integrating and/or
differentiating the functional specifications of the fundamentals of the model (e.g. individual preferences).
For differential characterizations of group consumption models, see Browning and Chiappori (1998) and
Chiappori and Ekeland (2006, 2009), who focused on the cooperative model, Lechene and Preston (2005,
2011), who considered the noncooperative model without caring, and d’Aspremont and Dos Santos Ferreira
(2014), who proposed a semicooperative model characterized by trade-offs between individual-level and
group-level budget constraints.
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minimal conditions on what is observed. In particular, we assume that at each observation
t we only observe the price vectors pt and Pt and the aggregate consumption bundles qt
and Qt. Given our discussion in the previous sections, we consider the following definition
of rationalizability.

Definition 3 Consider a data set S = {pt, Pt, qt, Qt}t∈T . We say that S is rationalizable
with caring if there exist utility functions UA and UB and, for each decision situation t,
there exist caring functions WA

t and WB
t and bundles qA,A

t , qA,B
t , qB,B

t , qB,A
t , QA

t , Q
B
t (with

qAt = qA,A
t +qA,B

t , qBt = qB,A
t +qB,B

t and Qt = QA
t +QB

t ) such that {qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t }

is a group equilibrium with caring.

Before providing testable revealed preference conditions for rationalizability, we briefly
recapture a result of Varian (1982; based on Afriat, 1967). Consider a finite set of |L|
observations, i.e. a set Z = {wl, xl}l∈L containing price vectors wl and quantity vectors xl.
Then, we say that this set Z can be rationalized by a utility function U if each quantity
bundle xl maximizes the function U in the following sense:

xl ∈ arg max
x

U (x) s.t. w′lx ≤ w′lxl.

Varian (1982) has shown that such a rationalizing utility function U exists if and only if
the set Z satisfies the Generalized Axiom of Revealed Preference (GARP).

Definition 4 Consider a set Z = {wl, xl}l∈L. For any l1, l2 ∈ L, define xl1R
Dxl2 if

w′l1xl1 ≥ w′l1xl2 .

Next, xl1Rxl2 if there exists a sequence r, . . . , t (with r, . . . , t ∈ L) such that

xl1R
Dxr, . . . , xtR

Dxl2 .

The set Z satisfies GARP if, for all l1, l2 ∈ L, xl1Rxl2 implies

w′l2xl1 ≥ w′l2xl2 .

Using Definition 4, we can characterize a data set S that is rationalizable with caring.

Proposition 3 Consider a data set S = {pt, Pt, qt, Qt}t∈T . The following conditions are
equivalent:

1. The data set S = {pt, Pt, qt, Qt}t∈T is rationalizable with caring.

2. For all decision situations t and public goods k there exist indices θAt , θ
B
t ∈ [0, 1],

vectors τAt =
(
τAt,1, ..., τ

A
t,K

)
, τBt =

(
τBt,1, ..., τ

B
t,K

)
∈ RK

+ , and bundles qAt , q
B
t ∈ RN

+ such
that

qAt + qBt = qt, (S.1)

max

{
τAt,k + θBt τ

B
t,k;

τBt,k + θAt τ
A
t,k

}
= Pt,k, and (S.2)

{pt, τAt , qAt , Qt}t∈T and {pt, τBt , qBt , Qt}t∈T satisfy GARP. (S.3)
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Moreover, it follows that there exists QA
t , Q

B
t ∈ RK

+ such that

if τAt,k + θBt τ
B
t,k < Pt,k then QA

t,k = 0 and QB
t,k = Qt,k, and (S.4)

if θAt τ
A
t,k + τBt,k < Pt,k then QB

t,k = 0 and QA
t,k = Qt,k. (S.5)

The explanation is as follows. The restriction S.1 requires the individual consumption
bundles for the private goods to sum to the demanded group bundle of private goods.
The restriction S.2 corresponds to the equilibrium condition for the public goods k in
Proposition 1 (for a positive consumption of the public good k). Condition S.3 states
that rationalizability implies a GARP condition at the level of individuals A and B, which
corresponds to the existence of the individual utility functions UA and UB in Definition 3.
The specificity of our model is that these GARP conditions use MWTP vectors (i.e. τAt
and τBt ) for evaluating the publicly consumed quantities (i.e. Qt). Finally, the conditions
S.4 and S.5 follow from the fact that, if τAt,k + θBt τ

B
t,k < Pt,k (resp. θAt τ

A
t,k + τBt,k < Pt,k), then

A (resp. B) will sell back any positive amount of the public good k. This implies QA
t,k = 0

(resp. QB
t,k = 0) and, thus, QB

t,k = Qt,k (resp. QA
t,k = Qt,k).

Testing and recovery. As argued in Appendix B, the revealed preference conditions
in Proposition 3 can be reformulated in mixed integer programming (MIP) terms. This
complements existing MIP characterizations of the cooperative model (in Cherchye, De
Rock and Vermeulen (2011)) and the noncooperative model without caring (in Cherchye,
Demuynck and De Rock (2011)). The attractive feature of the MIP characterization is
that it allows for checking consistency of a given data S with the conditions in Proposition
3. In the spirit of Varian (1982), we refer to this as ‘testing’ data consistency with the
model under study.

More specifically, all constraints of the MIP formulation are linear for fixed θAt and θBt
(see Appendix B). Linearity implies that the above program can be solved by standard
MIP methods for a given data set S. If we do not know the values of θAt and θBt (which is
usually the case), then we suggest to conduct a grid search that checks the above problem
(through MIP methods) for a whole range of possible values for θAt and θBt . For example,
in our empirical application we will use an equally sparse grid search with step 0.01.

If observed behavior is consistent with our model with caring (i.e. the set S is rationaliz-
able with caring), then a natural next question pertains to recovering/identifying structural
features of the decision model that underlies the (rationalizable) observed consumption be-
havior. In our application, we will illustrate recovery/identification of values for θ that are
consistent with a rationalization of a given set S. Given our discussion in the preceding
sections, this value can be interpreted in terms of intra-group cooperation (or caring) that
is revealed in the observed consumption behavior. Other recovery questions may pertain to
the MWTP values τMt,k(qM , Q) and individual income shares Y M

t at equilibrium (in terms
of the model with transfers; see Definition 2). Generally, such recovery can start from
the MIP methodology presented in this paper. In this respect, we can refer to Cherchye,
De Rock and Vermeulen (2011), who consider these questions for the cooperative model;
their analysis is directly extended to the noncooperative model with caring discussed here.
These authors’ basic argument is that revealed preference recovery on the basis of an MIP
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characterization of rational behavior boils down to defining feasible sets characterized by
the MIP constraints.

As for recovery of the individual income shares, one important final remark pertains
to restrictions S.4 and S.5 in Proposition 3. As we will explain below, these restrictions
imply that the shares Y A

t and Y B
t that underlie observed (rationalizable) behavior are

not identifiable in general. This contrasts with the cooperative case in which the within-
group income distribution (in general) can be identified from the observed set S. This
identifiability result does not generally hold under noncooperative behavior with caring.
As a matter of fact, this identifiability problem for our model actually parallels a similar
problem for the noncooperative model without caring.16

To see the identifiability problem, we first note that the budget constraints in DOP-A
and DOP-B imply

p′tq
A
t + (Pt − θBt τBt )′QA

t + θAt τ
A′
t Q

B
t = Y A

t , and

p′tq
B
t + (Pt − θAt τAt )′QB

t + θBt τ
B′
t QA

t = Y B
t .

Thus, because of conditions S.4 and S.5 we obtain that Y A
t and Y B

t are uniquely identified
only if we have, for all k and t,

τAt,k + θBt τ
B
t,k < Pt,k,

so that QA
t,k = 0 and QB

t,k = Qt,k, or

τBt,k + θAt τ
A
t,k < Pt,k,

so that QB
t,k = 0 and QA

t,k = Qt,k. In terms of the noncooperative model without caring,
this last situation would conform to the so-called separate spheres concept.17

On the other hand, as soon as there is one public good k to which both individuals
contribute for some t, i.e.

τAt,k + θBt τ
B
t,k = τBt,k + θAt τ

A
t,k = Pt,k,

it is impossible to exactly recover the income shares Y A
t and Y B

t that are consistent with a
rationalization of the given data. Specifically, in this case QA

t,k and QB
t,k can take any value

(under the sole condition QA
t,k +QB

t,k = Qt,k) and, thus, the expenditures on good k cannot
be assigned to the individual group members. Interestingly, this last result complies with
the so-called local income pooling result for the noncooperative model without caring.18

16See Cherchye, Demuynck and De Rock (2011) for more discussion on the identification of individual
income shares on the basis of testable revealed preference conditions for the noncooperative model without
caring.

17See, for example, Lundberg and Pollak (1993) and Browning, Chiappori and Lechene (2010).
18See, for example, Kemp (1984), Bergstrom, Blume and Varian (1986) and Browning, Chiappori and

Lechene (2010). Importantly, even though we cannot identify Y A
t and Y B

t under jointly contributed public
goods, it is still possible to recover upper and lower bounds on values for Y A

t and Y B
t that are consistent

with a rationalization with caring of the given data set. These bounds then account for the total (non-
assignable) expenditures on the jointly contributed public goods.
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Model fit. The above conditions for rationalizable behavior imply ‘exact’ tests: data
either satisfy the GARP requirements in Proposition 3 or not. In our empirical application,
we will use an index to assess how closely behavior complies with rationalizability. This
index will serve as a ‘goodness-of-fit’ measure that has a specific interpretation as capturing
the ‘economic significance’ of violations of our rationalizability conditions. Specifically,
the index calculates the minimal amount by which individual budget constraints must be
shifted downward in order to remove all violations of the individual GARP conditions. In
this sense, it is similar in spirit to the GARP-based goodness-of-fit measures that have
been proposed by Afriat (1973) and Varian (1990; see also our discussion below).19 To
formally define our index, we use the following extension of Definition 4.

Definition 5 Consider a set Z = {wl, xl}l∈L and a set of non-negative numbers {cl}l∈L.

For any l1, l2 ∈ L, define xl1R̃
Dxl2 if

w′l1xl1 − cl1 ≥ w′l1xl2 .

Next, xl1R̃xl2 if there exists a sequence r, . . . , t (with r, . . . , t ∈ L) such that

xl1R̃
Dxr, . . . , xtR̃Dxl2 .

Conditional on {cl}l∈L, the set Z satisfies GARP if, for all l1, l2 ∈ L, xl1R̃xl2 implies

w′l2xl1 ≥ w′l2xl2 − cl2 .

The adjusted revealed preference relation R̃D weakens the revealed preference relation
RD (i.e. wl1xl1 ≥ wl1xl2) by allowing individuals to waste an amount of cl1 of the budget.
The usual GARP condition in Definition 4 complies with cl = 0 for all l ∈ L. Generally,
higher values of cl imply weaker rationalizability restrictions.

For a given set Z, let

f =
∑
l

cl.

Then, our goodness-of-fit index f ∗ equals the smallest value of f that makes the set Z
satisfy the GARP condition in Definition 5. Intuitively, the index provides a measure of
how much we have to perturb the budgets to satisfy the revealed preference restrictions.

As a final note, we point out the formal analogy between our goodness-of-fit index and

the index proposed by Varian (1990). Instead of using the revealed preference relation R̃D

in Definition 5, Varian’s index is based on an adjusted relation RD such that xl1R
Dxl2 if

(1− el1)wl1xl1 ≥ wl1xl2 ,

where each factor el is a number between 0 and 1. The relation R̃D coincides with Varian’s
relation RD if we define

cl1 = el1wl1xl1 .

19For more details (including applications) of the indices suggested by Afriat (1973) and Varian (1990),
we refer to the recent discussions of Choi, Kariv, Muller and Silverman (2014) and Halevy, Persitz and
Zrill (2016).
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Essentially, our index evaluates goodness-of-fit in terms of absolute budget shifts, while
Varian’s index uses relative shifts. Our main motivation to focus on absolute (and not rela-
tive) shifts is of a computational nature. For the rationalizability conditions in Proposition
3, using our (absolute) index f ∗ obtains a mix integer programming (MIP) problem that
is linear in unknowns (see Appendix C). By contrast, using a Varian-type (relative) index
implies constraints that are quadractic in unknowns, which are substantially more complex
to handle.20 In this respect, it is worth remarking that in our following application the
budget levels are held constant over all decision situations. In this specific setting, the use
of absolute versus relative budget shifts is obviously irrelevant for comparing these shifts
over decision situations.

5 Application: joint decisions of children

To show the practical usefulness of our model, we apply it to analyze consumption de-
cisions made by dyads of children in an experimental setting. This empirical applica-
tion fits within the growing interest in understanding children’s economic rationality (see,
for example, Harbaugh, Krause and Berry, 2002, and Seguin, Arseneault and Tremblay,
2007) and (group) decision-making (recent examples include Fehr, Glätzle-Rützler and
Sutter, 2013, Angerer, Glätzle-Rützler, Lergetporer and Sutter, 2016, and Czermak, Feri,
Glätzle-Rützler and Sutter, 2016). This gained interest is motivated by children’s increas-
ing economic importance, in terms of their impact on joint decisions with parents (see, for
example, Calvert, 2008) and peers (see, for example, Wouters, Larsen, Kremers, Dagnelie
and Geenen, 2010). Because observational data on joint decisions made by children are
typically not available, we make use of a laboratory experiment that is specially tailored
to obtain the data needed for our revealed preference methodology.

As we explain in more detail below, our following empirical exercise uses an experimen-
tal design that is closely similar to the one of Bruyneel, Cherchye, Cosaert, De Rock and
Dewitte (2017). A main difference with this earlier study is that our current design uses
consumption bundles that contain a public good. This makes it possible to empirically dis-
tinguish between models with different degrees of caring on the basis of our characterization
in Proposition 3. In addition, an advantage of our experimental design is that we not only
observe joint choices of the children dyads but also the children’s individual choices. This
gives us additional identifying information on the individual preferences, which benefits our
testing analysis as well as our recovery results on the degree of within-dyad cooperation.

After presenting our sample and the specificities of our experimental design, we will
first demonstrate that the noncooperative model with caring effectively does provide an
empirically relevant extension of the fully cooperative and noncooperative (without caring)
models. In particular, our caring model will achieve a better ‘goodness-of-fit’ than these
other models. Second, we will show that we can informatively (set) identify the degree of
caring for individual dyads by using our revealed preference methodology. We obtain upper
and lower bounds on the caring parameter that are very tight (close to point identification)

20Technically, when starting from the rationalizability conditions in Proposition 3, the rationalizabil-
ity constraints will become quadratic because the factors el (defined above) have to be multiplied with
unknowns representing the individuals’ willingness to pay for the observed consumption quantities.
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obs mean std dev

third grade 61 0.295 0.460
sixth grade 61 0.295 0.460
social (dyad mean) 58 6.816 1.084
assertive (dyad mean) 58 6.578 1.225
interaction 61 0.295 0.460
mixed 61 0.475 0.504
both female 61 0.262 0.444

Table 1: Summary statistics of observed dyad characteristics

for a significant number of dyads. This demonstrates that the caring model can have sub-
stantial empirical bite, even when only exploiting its nonparametric testable implications.
Finally, we will explore to what extent the observed variation in caring across dyads can
be related to observed dyad characteristics.

To facilitate the following discussion, we will focus on the caring model with the de-
gree of intra-dyad cooperation held constant over all observed decision situations, i.e. we
consider θJt = θJ for all t and J ∈ {A,B}. The underlying assumption is that the degree
of intra-dyad cooperation does not change over the observations. In this respect, we recall
that the fully cooperative model and the noncooperative model without caring correspond
to θA = θB = 1 and θA = θB = 0, respectively. Furthermore, because we found that
allowing for variation in caring across dyad members does not increase the fit of the caring
model (results available upon request), we will abstract from intra-dyad variation in caring,
i.e. we use θA = θB = θ. In other words, we will specifically focus on dyad-level degrees
of cooperation; we will then also relate these dyad-level estimates of θ to observed dyad
characteristics.

Sample and experimental design. We collected our data on children’s consumption
choices in two different schools in Belgium among three age categories: kindergarten level,
third grade and sixth grade. Dropping children with misreported values (18 in total) leads
to a sample of 122 participants. The final sample consists of 50 kindergarten children
(5-6 years old), 36 third graders (8-9 years old) and 36 sixth graders (11-12 years old).
The children were randomly teamed up in pairs conditional on these age brackets. This
guarantees sufficient variation in the level of friendship between group members. We also
collected information on children’s social skills and assertiveness (scale from 1-10) and
whether the children in the dyad interacted a lot in the school environment (dummy). This
information was obtained from teacher-based assessments. We show summary statistics of
these covariates in Table 1.

As indicated above, our experimental design mainly follows the one of Bruyneel, Cher-
chye, Cosaert, De Rock and Dewitte (2017). Therefore we only briefly summarize our
set-up below, and we refer to these authors for more details on the choice sets, experi-
mental instructions and survey questions. We invited the dyads to jointly choose a se-
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movie mandarins biscuits

16 4 1
16 3 2
18 3 1
2 8 4
4 8 3
2 9 3
8 1 8
6 2 8
6 1 9

Table 2: Implicit prices for the various choice problems.

ries of consumption bundles composed of three non-durable commodities: time to watch
movies, mandarins and letter biscuits. The children are faced with nine different choice
sets containing seven alternatives. Each choice set corresponds to a unique combination of
(implicit) prices (reported in Table 2) and a fixed budget of 24. Following the argument
of Harbaugh, Krause and Berry (2001), the discrete nature of the choice sets considerably
simplifies the decision problems faced by the children. Each choice set contains three bun-
dles in which the total (implicit) budget is allocated to a single commodity, three bundles
in which the budget is spent on two of the three commodities, and one bundle with strictly
positive amounts of all three commodities. The children within each dyad are also asked to
distribute the mandarins and letter biscuits from the jointly selected bundle among each
other, which allows us to perfectly observe the allocation of these goods to each individual
member. Strictly speaking, this extra information is not needed to implement our revealed
preference conditions. However, it does add considerable empirical bite to our analysis.
Finally, the children are clearly informed that they will receive one of their choices at the
end of the experiment, which is meant to incentivize them to truly reveal their preferences.

Next, we want to emphasize two specific features of our design, which directly relate
to the research question that we study here. A first specificity is that we let children
choose between units of movie watching (5 minutes per unit), units of mandarins (12.5
gram per unit) and letter biscuits (5 gram per unit). The first good gives the children the
possibility to jointly watch part of a popular Belgian TV series.21 Clearly, watching movies
is non-rivalrous and non-exclusive within a given dyad, which makes this a public good.
This contrasts with Bruyneel, Cherchye, Cosaert, De Rock and Dewitte (2017), who used
grapes instead of movies for the first good, so that all goods were private by construction.
Table 2 presents the implicit prices of the goods that we used in each of our nine choice
regimes.

The second specific feature of our design is that we not only let the children choose
jointly but also individually. More specifically, prior to making the joint decision, the chil-
dren were invited to make nine individual choices. These individual choices had the same

21The particular TV series was differentiated in order to appeal to children in the various age brackets.
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obs mean std dev median min max

joint experiment
movie 61 0.443 0.223 0.444 0 1.000
mandarins 61 0.231 0.169 0.203 0 0.703
biscuits 61 0.326 0.160 0.315 0 0.703

individual experiment
movie 122 0.447 0.220 0.463 0 0.917
mandarins 122 0.224 0.163 0.213 0 0.694
biscuits 122 0.329 0.132 0.333 0.028 0.559

difference (joint − individual)
movie 61 -0.004 0.136 -0.019 -0.352 0.361

Table 3: Budget shares chosen in the joint and invidual experiments, and the associated
difference in budget share spent on movies

choice sets as in joint decision problems (explained above) except that the (implicit) price
of the public good and the individual’s (implicit) budgets were halved. These modifications
guarantee that, in principle, each child could select exactly the same bundles as in the joint
choice problems.

An important advantage of combining choices of the same child from the individual
and joint choice settings is that it substantially improves the empirical bite of the revealed
preference methods. In the individual choice setting, watching film is a private good.
Therefore, in this case, the marginal willingness to pay for the film equals the known
(implicit) price. For the joint choice problems, individual marginal willingness to pay for
the public good, i.e. τAt and τBt , are unknown but need to satisfy the condition specified in
Proposition 3. Under the assumption that each child’s preferences remain the same in the
individual and joint choice settings, we can use the observed individual choices to improve
the bounds on τAt and τBt . This in turn enhances the discriminatory power of our revealed
preference tests and the identification of the caring parameter θ.

Table 3 presents summary statistics of the observed budget shares. Average budget
shares in the joint choice experiment vary between 0.231 and 0.443. This indicates that
all goods were sufficiently attractive. The mean budget shares for the individual choices
are very similar. The bottom line of Table 3 gives summary statistics for the difference
between the budget share allocated to film for the individual and joint choice settings.
While this difference is fairly small on average, it goes up to no less than 36 percentage
points for at least one dyad.

Model fit. We start by testing the revealed preference restrictions of the caring model.
For alternative specifications of the caring parameter θ, we evaluate the fit of the associated
joint consumption model by computing our goodness-of-fit index f ∗ for every distinct dyad.
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To recall, a lower value for f ∗ indicates a better fit of the observed behavior with the model’s
assumptions. In Appendix C, we explain our method to compute our index based on the
rationalizability conditions in Proposition 3, while accounting for the particularities of our
empirical application.

As explained above, the noncooperative model with caring nests the fully cooperative
and fully noncooperative (without caring) models. The relevance of the former model thus
depends on the extent to which it allows us to better explain the observed choice behavior.
Let f ∗caring, f

∗
coop and f ∗noncoop represent the value of the indices conditional on whether

θ ∈ [0, 1] (i.e. caring model), θ = 1 (i.e. cooperative model) or θ = 0 (i.e. noncooperative
model), respectively. Table 4 presents summary statistics on the distribution of these three
indices. For the full sample of 61 dyads, the mean index values are 5.50, 5.88 and 6.04
respectively. Given the construction of our goodness-of-fit measure (explained in Appendix
C), these values can be interpreted as the dyads’ total budget waste summed over their
different choice experiments. The total available budget over all these choice problems
equals 432 (i.e. 2 ·9 ·24). As our mean values for f ∗caring, f

∗
coop and f ∗noncoop are small relative

to this total budget, we may conclude that all three models fit the data fairly well at the
overall sample level.

To further motivate this conclusion, we simulate random data sets by uniformly drawing
1000 bundles from the respective choice sets. For this simulated random choice behavior,
we obtain average values for f ∗caring = 25.55, f ∗coop = 26.35 and f ∗noncoop = 26.23, which are
substantially above the averages that are reported in Table 4. Perhaps even more striking,
the 10-th percentiles of f ∗caring, f

∗
coop and f ∗noncoop for random data sets (8.79, 9.29 and 9.62

respectively) are still above the mean (and median) values reported in Table 4.
Importantly, Table 4 reveals that the caring model generally provides a better empirical

fit of the observed dyads’ choice behavior than the fully cooperative and noncooperative
models. The question remains whether these differences are statistically significant. To
investigate this, we conduct the Wilcoxon matched-pairs signed-ranks test and the Sign test
of matched pairs. The first test checks the hypothesis that the distributions of f ∗caring, f

∗
coop

and f ∗noncoop are the same, while the second test verifies the hypothesis of equal median
values. Interestingly, both tests support the same conclusions. First, we can reject the
hypotheses that distributions and medians are the same for f ∗caring and f ∗coop as well for
f ∗caring and f ∗noncoop (both p-values are below 0.0001). By contrast, we are unable to reject
the hypotheses of equal distributions and medians for f ∗coop and f ∗noncoop (the p-value for
Wilcoxon test is 0.890 and the p-value for the Sign test is 0.766), which signals that the
noncooperative model does not significantly outperform the cooperative model or vice
versa. In our opinion, these results clearly motivate the empirical relevance of our newly
proposed caring model in terms of explaining the observed group consumption behavior.

Identifying the degree of caring. By using the revealed preference restrictions out-
lined in Section 4, we can identify upper and lower bounds on the caring parameter θ that
are consistent with rationalizing the observed choice behavior. This effectively obtains ‘set’
identification (to be contrasted with more standard ‘point’ identification) of this parameter.
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obs mean std dev median min max

f ∗caring 61 5.503 8.605 0.600 0 38.711
f ∗coop 61 5.879 8.785 1.313 0 39.031
f ∗noncoop 61 6.043 9.018 1.200 0 38.711

Table 4: Summary statistics of the goodness-of-fit index.

obs mean std dev median min max

θlb 61 0.211 0.372 0 0 1
θub 61 0.820 0.344 1 0 1

θ 61 0.515 0.284 0.5 0 1

Table 5: Summary statistics of θlb, θub and θ

Such set identification is standard in revealed preference analysis.22 More specifically, for
each dyad we obtain the lower bound θlb on the caring parameter by minimizing θ subject
to the rationalizability restrictions in Proposition 3, while fixing our index f ∗caring at its
value computed above. Analogously, we compute the upper bound θub by maximizing θ
subject to the same restrictions.

Table 5 presents summary statistics for θlb, θub and the midpoint of the interval [θlb, θub],
denoted by θ. We find that the average lower bound is 0.211, which is substantially above
the zero value that applies to the noncooperative model without caring. Similarly, the
average upper bound equals 0.820, which is significantly below the value of unity that
holds for the fully cooperative model. Further, we observe that the average value of θ
amounts to 0.515. These results again show the value added of our caring model relative
to the cooperative and noncooperative models in terms of explaining the observed dyad
behavior. In addition, the standard deviations and the minimum and maximum values
that are reported in Table 5 suggest quite some variation in the degree of caring across
dyads. In this respect we also note that the minimal upper bound equals zero and the
maximal lower bound equals one.

Next, Table 6 provides a summary of the distribution of ∆ = θub − θlb over the 61
dyads. We obtain θub ≈ θlb for 14 dyads, which shows that the identification can be very
precise (i.e. close to point identification). On the other hand, for 26 of the 61 dyads, we
get ∆ = 1, which corresponds to θlb = 0 and θub = 1. For these dyads, our rationalizability
restrictions do not reveal specific information on the value of θ.

As a final exercise, we link the identified variation in the caring parameter to observed
dyad characteristics. In our regressions, we use the maximum degree of caring (θub) as

22See, for example, Adams (2015) and Cherchye, Demuynck, De Rock and Vermeulen (2017) for more
discussion and recent examples.
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∆ = θub − θlb obs

≈ 0 14
≤ 0.25 19
≤ 0.5 25
≤ 0.75 29
< 1 35
= 1 26

Table 6: Distribution of ∆ = θub − θlb

dependent variable. Our motivation is two-fold. First, the value of θub varies substantially
over our sample of dyads, which obviously is useful for an informative explanatory analysis.
Second, and more importantly, the upper bound θub has an intuitive interpretation as
quantifying the minimum deviation from the fully cooperative model that is required to
rationalize the observed dyad behavior. Given its popularity in the applied literature on
group/household consumption, this cooperative model constitutes a natural benchmark
model of group behavior. This makes it particularly interesting to empirically investigate
which dyad characteristics correspond to more or less behavioral consistency with the model
(captured by θub). We include seven dyad characteristics as covariates in our regressions:
a dummy for third grade, a dummy for sixth grade, a dummy indicating whether the dyad
members interact strongly in the daily school environment, two teacher-based measures
of social skills and assertiveness, and two gender covariates showing whether the dyad is
mixed or consists of two females. Due to missing observations on some of these covariates,
we had to remove 3 dyads in our regressions, yielding a sample with 58 dyads.

Table 7 presents our results. In the first regression specification, we include all dyads
of our sample, thus also the ones with high levels of f ∗caring (i.e. low goodness-of-fit). The
first two columns of Table 7 report our findings from a simple OLS regression and, respec-
tively, Papke and Wooldridge (1996)’s quasi-maximum likelihood estimation procedure for
fractional response data (which accounts for θub situated between 0 and 1 with many ob-
servations equal to 0 or 1). Even though our sample size is small, we do observe that
the dummy for interaction is strongly significant (at the 5% level), while our measure of
assertiveness is borderline significant in the OLS regression. The regressions do not show
an (additional) significant effect of our social skills measure.

As a robustness check, we also consider a second specification, for which we exclude
the 6 dyads of which the value for f ∗caring is situated above the 90–th percentile for our
sample. The value of this 90–th percentile equals 18, which is about 4.2 percent of a dyad’s
total available budget (= 432, as explained above). Thus, in terms of our goodness-of-fit
measure, the behavior of the selected 52 dyads is reasonably close to that predicted by the
caring model, as low levels of f ∗ signal a high degree of consistency with the caring model.
The results of these additional regressions are given in the third and fourth columns of
Table 7. Interestingly, our qualitative conclusions are the same as before. Again, dyads who
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θub all 90%−lowest
f ∗caring (≤ 18)

OLS QML OLS QML

third grade 0.035 0.257 -0.031 -0.333
(0.105) (0.805) (0.102) (0.937)

sixth grade -0.080 -0.487 -0.184 -1.424
(0.109) (0.825) (0.110) (0.900)

social -0.061 -0.393 -0.076 -0.463
(0.051) (0.353) (0.049) (0.346)

assertive 0.078* 0.509 0.087** 0.584
(0.046) (0.407) (0.043) (0.360)

interaction 0.208* 2.055** 0.190* 1.970**
(0.105) (0.844) (0.102) (0.955)

mixed 0.085 0.585 0.054 0.261
(0.111) (0.878) (0.113) (1.146)

female -0.053 -0.368 -0.092 -0.873
(0.123) (0.963) (0.123) (1.187)

intercept 0.658** 0.533 0.794** 1.476
(0.316) (2.838) (0.311) (2.765)

obs 58 58 52 52
R2 0.148 0.204

Table 7: Regression results (* and ** indicating statistical significance at 10 percent and 5 percent,

respectively)

strongly interact have a larger value of the caring parameter θub. Also, the OLS regression
indicates that the coefficient for assertiveness is positively related to the estimate of θub.
Dyads with more assertive members may be more inclined to share information on their
preferences and may also be more eager to interact in order to reach a more cooperative
solution. The finding that more assertive and interacting dyads behave more cooperatively
confirms our prior intuition. In our opinion, these findings provide additional validation to
the empirical usefulness of our caring model and our proposed measure for the degree of
cooperation.

6 Conclusion

We have presented a model for analyzing group consumption behavior that simultaneously
accounts for caring preferences and noncooperative behavior. Interestingly, by varying the
degree of intra-group caring, the model encompasses a whole continuum of consumption
models situated between the fully cooperative model (assuming a Pareto efficient outcome)
and the noncooperative model without caring (assuming a public good game with voluntary
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contributions). Attractively, our newly proposed model also allowed us to define a measure
for the degree of intra-group cooperation, which quantifies how close the observed group
behavior is to the fully cooperative benchmark. Following a revealed preference approach,
we derived the testable implications of the model for empirical data.

We demonstrated the empirical relevance of our theoretical model through an empirical
application to consumption choices made by dyads of children. We found that our new
caring model provided a better fit of the data compared to the fully cooperative and
noncooperative models. Next, we showed that we can informatively identify the degree
of intra-group caring by using our nonparametric revealed preference methodology. Our
results suggest that cooperation varies considerably across dyads, and that the degree of
cooperation is often situated strictly between the extreme cases of full cooperation and
noncooperation without any caring. We also found that our measure of cooperation is
positively correlated with assertiveness and the degree of interaction within dyads.

We believe that these empirical results validate the practical usefulness of our consump-
tion model to investigate cooperation in group consumption, as well as its defining char-
acteristics. While we used experimental data in the current study, our revealed preference
methodology can also be used in combination with observational data. For example, an
interesting application may identify the degree of cooperation in household consumption,
and relate inter-household heterogeneity to specific household (member) characteristics.
In this respect, we can also refer to Cherchye, De Rock and Vermeulen (2009, 2011) and
Cherchye, Demuynck and De Rock (2011) for empirical studies of household consumption
behavior that make use of revealed preference methods similar to ours.

A Proofs

A.1 Proof of Proposition 1

The first order conditions for OP-A and OP-B with respect to the numeraire (i.e. the
first private good) and public goods k are
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with λAt and λBt the Lagrange multipliers of the respective budget constraints. We start
from the following observations:

• Either (1) or (2) must hold with equality. This follows from the fact that qAt,1 is
strictly positive.

• Either (3) or (4) must hold with equality. This follows from the fact that qBt,1 is
strictly positive.

• Either (5) or (6) must hold with equality. This follows from the fact that Qt,k is
strictly positive.

• Not both (1) and (4) have strict inequality.

Proof. We prove ad absurdum. Suppose both (1) and (4) hold with strict inequality,
then by the first two observations above, it must be that (2) and (3) hold with
equality. Then, dividing condition (1) by (2) gives:
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This contradicts Assumption SC.

The above reasoning gives us three possible cases: (i) both (1) and (3) hold with
equality, (ii) both (1) and (4) hold with equality, (iii) both (2) and (4) hold with equality.

Case (i) In this case, equation (5) can be rewritten as(
τAk (qAt , Qt) + τBk (qBt , Qt)

)
≤ Pt,k (7)

Further, we have that,
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The inequality in (8) follows from using conditions (2) and (4). The inequality in (9)
follows from (7).

As one of the two conditions (5) or (6) must hold with equality, we have that that
τAk (qAt , Qt) + τBk (qBt , Qt) = Pt,k. As k was arbitrary, this holds for every public good.
Setting θAt = θBt = 1 demonstrates the proof.

Case (ii) For this case, we can rewrite conditions (5) and (6) as:
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As one of these two conditions must hold with equality, we have that:
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{
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where

θAt =
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and,
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The inequality in (11) follows from dividing condition (2) by (1) while the inequality in
(12) follows from dividing condition (3) by (4).

Case(iii) This case is analogous to case (i).
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A.2 Proof of Proposition 2

A.2.1 Proof of statement 1

Assume that for each decision situation t we have that {qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t }

satisfies the definition of a household equilibrium with caring for the utility functions UA,
UB, caring functions WA

t , WB
t , prices pt, Pt and household income Yt.

We need to show that there exist numbers θAt , θBt ∈ [0, 1] and incomes Y A
t , Y B

t (with
Y A
t + Y B

t = Yt) such that {qAt , qBt , QA
t , Q

B
t } is a household equilibrium with transfers. Let

us first focus on individual A. For the proof, we will again distinguish three cases, identical
to the cases used in the proof of Proposition 1.

Before we begin, consider the first order condition for A and B with respect to the nth
private good for A (i.e. the quantities qA,A

t,n and qB,A
t,n ):
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Lemma 1 If case (i) or (ii) holds and qAt,n > 0, then (13) holds with equality for all private
goods s at equilibrium. On the other hand if case (iii) holds and qAt,n > 0, then (14) holds
with equality for all private goods n at equilibrium.

Proof. Assume that either case (i) or (ii) holds and that
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a contradiction. A similar reasoning holds for the second part of the Lemma.
Let us now consider the three relevant cases that were also considered in the proof of
Proposition 1:

Case (i) In this case, we set θAt = θBt = 1 and we define:

Y A
t = p′tq

A
t + (Pt − τBt )′QA

t + τA′t Q
B
t .

Towards a contradiction, let us consider an allocation (qA, QA) such that

p′tq
A + (Pt − τBt )′QA + τA′t Q

B
t ≤ Y A

t
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and,

UA(qA, QA +QB
t ) > UA(qAt , Q

A
t +QB

t ).

Denote by UA
qAt

and UA
Qt

the subgradient vectors for UA with respect to qA and Q at the

bundles (qAt , Qt). Then, by concavity of UA, we have that:

UA(qA, QA +QB
t )− UA(qAt , Q

A
t +QB

t ) ≤ UA
qAt

(qA − qAt ) + UA
Qt

(QA −QA
t )

=
λAt
∂WA

t

∂UA
t

[
p′t(q

A − qAt ) + (Pt − τBt )′(QA −QA
t )
]

≤ 0.

The first inequality follows from Lemma 1 and the fact that condition (5) must hold with
equality for case (i). The second inequality follows from the budget constraint and gives
us the desired contradiction.

Case (ii) In this case, we define θBt and θAt as in conditions (11) and (12) and we define
Y A
t by
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One can easily see that for case (ii), QA
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Now, assume towards a contradiction that there exist an allocation (qA, QA) such that

p′tq
A + (Pt − θBt τBt )′QA + θAt τ

A′
t Q

B
t ≤ Y A

t

and,

UA(qA, QA +QB
t ) > UA(qAt , Q

A
t +QB

t ).

Then, by concavity of UA, we have that:

UA(qA, QA +QB
t )− UA(qAt , Q

A
t +QB

t ) ≤ UA
qAt

(qA − qAt ) + UA
Qt

(QA −QA
t )

=
λAt
∂WA

t

∂UA
t

[
p′t(q

A − qAt ) + (Pt − θBt τBt )′(QA −QA
t )
]

≤ 0

Again, we have a contradiction.
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Case (iii) For this last case, we define θAt = θBt = 1, and,

Y A
t = p′tq

A
t + (Pt − τBt )′QA

t + τA′t Q
B
t .

Assume, on the contrary, that there exist an allocation (qA, QA) such that

p′tq
A + (Pt − τBt )′QA + τA′t Q

B
t ≤ Y A

t

and,

UA(qA, QA +QB
t ) > UA(qAt , Q

A
t +QB

t ).

Again, by concavity of UA, we have that:

UA(qA, QA +QB
t )− UA(qAt , Q

A
t +QB

t ) ≤ UA
qAt

(qA − qAt ) + UA
Qt

(QA −QA
t )

=
λBt
∂WB

t

∂UA
t

[
p′t(q

A − qAt ) + (Pt − τBt )′(QA −QA
t )
]

≤ 0

The equality follows from Lemma (1) and the fact that condition (6) must hold with
equality for case (iii). This concludes the proof for individual A. The proof for individual
B is analogous.

A.2.2 Proof of statement 2

Now assume that for each decision situation t there exist indices θAt , θBt ∈ [0, 1] and incomes
Y A
t , Y

B
t such that {qAt , qBt , QA

t , Q
B
t } satisfies the definition of an equilibrium with transfers

for utility functions UA, UB. We need to show that there exist caring functions WA
t

and WB
t satisfying Assumption SC and consumption bundles qA,A

t , qA,B
t , qB,B

t , qB,A
t (with

qAt = qA,A
t +qA,B

t and qBt = qB,A
t +qB,B

t ) such that {qA,A
t , qA,B

t , qB,B
t , qB,A

t , QA
t , Q

B
t } is a group

equilibrium with caring.
We define the caring functions WA

t (UA, UB) = UA+θBt (µA
t /µ

B
t )UB and WB

t (UB, UA) =
UB +θAt (µB

t /µ
A
t )UA. In this construction, µA

t and µB
t represent the marginal utilities of the

numeraire for members A and B at equilibrium (i.e.
∂UA

∂qA1
= µA

t and
∂UB

∂qB1
= µB

t ). It is easy

to see that these specifications satisfy Assumption SC as long as θAt and θBt are contained
in the unit interval. Further, we choose qA,A

t = qAt , q
B,B
t = qBt , q

A,B
t = 0 and qB,A

t = 0. Let
us focus on member A and assume on the contrary that there exist bundles qA,A, qA,B, QA

such that

p′t(q
A,A + qA,B + qB,B

t )+P ′t(Q
A +QB

t ) ≤ Yt,

and,

UA(qA,A + qB,A
t , QA +QB

t )+θBt (µA
t /µ

B
t )UB(qB,B

t + qA,B, QA +QB
t ) >

UA(qAt , Qt) + θBt (µA
t /µ

B
t )UB(qBt , Qt).
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This gives,

UA(qA,A, QA +QB
t ) + θBt (µA

t /µ
B
t )UB(qBt + qA,B, QA +QB

t )

− UA(qAt , Qt)− θBt (µA
t /µ

B
t )UB(qBt , Qt)

≤UA′
qAt

(qA,A − qAt ) + UA′
Qt

(QA −QA
t ) + θBt (µA

t /µ
B
t )
[
UB′
qBt
qA,B + UB′

Qt
(QA −QA

t )
]

=µA
t

[
p′t(q

A,A − qAt ) + θBt p
′
tq

A,B +
(
τA′(qAt , Qt) + θBt τ

B′(qBt , Qt)
)

(QA −QA
t )
]

≤µA
t

[
p′t(q

A,A + qA,B − qAt ) + P ′t(Q
A −QA

t )
]

≤0.

The first inequality follows from concavity of the functions UA and UB. The first equality
follows from the first order conditions of programs DOP-A and DOP-B for the private
goods. The second inequality follows from the fact that θBt ≤ 1, the first order conditions
of DOP-A for the public goods and the fact that τAt,k + θBt τ

B
t,k < Pt,k only if QA

t,k = 0.

A.3 Proof of Proposition 3

1⇒2. The data set S = {pt, Pt, qt, Qt}t∈T is rationalizable with caring. Because of Propo-
sition 2, we have for any decision situation t that the household allocation solves DOP-A
and DOP-B. As before, let UM

qMt
and UM

Qt
(M = A,B) be the subgradients for the function

UM at bundle (qMt , Qt), and λAt and λBt the Lagrange multipliers for the budget constraints.
We get as first order conditions, for each private good j and public good k,

UA
qAt,j
≤ λAt pt,j,

UB
qBt,j
≤ λBt pt,j,

UA
Qt,k
≤ λAt (Pt,k − θBt τB(qBt , Qt)),

UB
Qt,k
≤ λBt (Pt,k − θAt τA(qAt , Qt)).

The inequalities are replaced by equalities in case the quantities of the goods under consid-
eration are strictly positive. Next, concavity of the utility functions UA and UB implies,
for all decision situations t, v

UA(qAt , Qt)− UA(qAv , Qv) ≤UA′
qAv

(qAt − qAv ) + UA′
Qv

(Qt −Qv),

UB(qBt , Qt)− UB(qBv , Qv) ≤UB′
qBv

(qBt − qBv ) + UB′
Qv

(Qt −Qv).

For all t, define UA
Qt
/λAt = τAt and UB

Qt
/λBt = τBt , UA(qAt , Qt) = UA

t and UB(qBt , Qt) = UB
t .

This gives,

UA
t − UA

v ≤ λAv
(
p′v(q

A
t − qAv ) + τA′t (Qt −Qv)

)
, (15)

UB
t − UB

v ≤ λBv
(
p′v(q

B
t − qBv + τBt (Qt −Qv)

)
. (16)

To see that this obtains S.3, we make use of the Afriat Theorem (see Afriat (1967) and
Varian (1982)). Specifically, the inequalities in (15)-(16) are so-called Afriat inequalities,
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and the Afriat Theorem implies that these inequalities are satisfied for all t, v if and only
if the sets {pt, τAt , qAt , Qt}t∈T and {pt, τBt , qBt , Qt}t∈T satisfy GARP.

Moreover, at the equilibrium, if τAt,k + θBt τ
B
t,k < Pt,k, then QA

t,k = 0 and, thus, QB
t,k =

Qt,k > 0. Then, the first order condition for k in DOP-B must be binding, so that
θAt τ

A
t,k + τBt,k = Pt,k. This obtains the first part of S.2. Reversing the roles of A and B shows

the other part of S.2. Similarly, one can verify S.4 and S.5.

2⇒1. Because the GARP conditions in (S.3) are satisfied, the Afriat Theorem (mentioned
above) tells us that there exist positive numbers UA

t , UB
t and strictly positive numbers λAt

and λBt such that the following Afriat inequalities hold:

UA
t − UA

v ≤ λAv
(
p′v(q

A
t − qAv ) + τA′v (Qt −Qv)

)
,

UB
t − UB

v ≤ λBv
(
p′v(q

B
t − qBv ) + τB′v (Qt −Qv)

)
.

Then, define the functions UA and UB such that:

UA(qA, Q) = min
v∈T

{
UA
v + λAv

(
p′v(q

A − qAv ) + τA′v (Q−Qv)
)}
,

UB(qB, Q) = min
v∈T

{
UB
v + λBv

(
p′v(q

B − qBv ) + τB′v (Q−Qv)
)}
.

Notice that UA and UB are continuous, concave, strictly monotone and that for all t ∈ T ,
UA(qAt , Qt) = UA

t and UB(qBt , Qt) = UB
t . See, for example, Varian (1982).

We need to show that the functions UA and UB provide a rationalization of the data
set. For brevity, we only provide the argument for UA, but a straightforwardly analogous
reasoning applies to UB. For all t ∈ T, define QA

t and QB
t so that if τAt,k + θBt τ

B
t,k < Pt,k then

QA
t,k = 0 and QB

t,k = Qt,k, and if θAt τ
A
t,k + τBt,k < Pt,k then QB

t,k = 0 and QA
t,k = Qt,k (see S.4

and S.5). (If τAt,k + θBt τ
B
t,k = Pt and θAt τ

A
t,k + τBt,k = Pt,k then we can randomly allocate Qt,k

between QA
t,k and QB

t,k.) Next, consider t ∈ T and a bundle (qA, QA) with Q = QA + QB
t

such that

p′tq
A +

∑
k

[(
Pt,k − θBt τBt,k

)
QA

k + θAt τ
A
t,kQ

B
t,k

)
≤p′tqAt +

∑
k

[(
Pt,k − θBt τBt,k

)
QA

t,k + θAt τ
A
t,kQ

B
t,k

)
,

or equivalently,

p′tq
A +

∑
k

[(
Pt,k − θBt τBt,k

)
QA

k

)
≤ p′tq

A
t +

∑
k

[(
Pt,k − θBt τBt,k

)
QA

t,k

)
.

Then, we have to prove that UA(qA, Q) ≤ UA(qAt , Qt). To obtain this result, we first note
that, by construction, τAt Q

A
t = (Pt − θBt τBt )QA

t . Thus, because τAt,k + θBt τ
B
t,k ≤ Pt,k (which

implies τAt Q
A ≤ (Pt − θBt τBt )QA), we get τAt (QA − QA

t ) ≤ (Pt − θBt τBt )′(QA − QA
t ). Using

this, we obtain

UA(qA, Q) = min
v∈T

{
UA
v + λAv

(
p′v(q

A − qAv ) + τA′v (Q−Qv)
)}

≤ UA
t + λAt

(
p′t(q

A − qAt ) + τA′t (Q−Qt)
)

= UA
t + λAt

(
p′t(q

A − qAt ) + τA′t (QA −QA
t )
)

≤ UA
t + λAt

(
p′t(q

A − qAt ) + (Pt − θBt τBt )′(QA −QA
t )
)

≤ UA
t .

This provides the wanted result, i.e. {qAt , QA
t } solves DOP-A.
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B Mixed integer programming characterization

In this appendix, we reformulate the conditions in Proposition 3 in mixed integer pro-
gramming (MIP) terms. To obtain this MIP formulation, we define the binary variables
xMt,v ∈ {0, 1}, with xMt,v = 1 interpreted as

(
qMt , Qt

)
RM

(
qMv , Qv

)
where RM is the revealed

preference relation for individual M ∈ {A,B}. Then, a data set S satisfies the necessary
and sufficient condition for rationalizability as given by Proposition 3 if and only if the
following MIP problem is feasible:

For all decision situations t, v and public goods k there exist strictly positive vectors τAt τ
B
t ∈

RK
++, binary variables bt,k, x

A
t,v, x

B
t,v ∈ {0, 1}, and parameters θAt , θ

B
t ∈ [0, 1] such that:23

τAt + θBt τ
B
t ≤ Pt, (17)

θAt τ
A
t + τBt ≤ Pt, (18)

Pt,k − τAt,k − θBt τBt,k ≤ bt,kCt, (19)

Pt,k − θAt τAt,k − τBt,k ≤ (1− bt,k)Ct, (20)

qAt + qBt = qt, (21)

p′t(q
M
t − qMv ) + τM ′t (Qt −Qv) < xMt,vCt, (22)

xMt,s + xMs,v ≤ 1 + xMt,v, (23)

(1− xMt,v)Cv ≥ p′v(q
M
v − qMt ) + τM ′v (Qv −Qt), (24)

with Ct a given number for which Ct > Pt,k and Ct > Yt for all t, k.

The explanation is as follows. Constraint (21) imposes that the private consumption
bundles qAt and qBt sum to the observed aggregate quantities qt, as required by condition
S.1. Further, constraints (17)-(20) comply with condition S.2 in Proposition 3. Specifically,
(17) and (18) impose the given upper bound restriction for τAt and τBt . Next, (19) imposes
Pt,k ≤ τAt,k + θBt τ

B
t,k if zt,k = 0, while (20) imposes Pt,k ≤ θAt τ

A
t,k + τBt,k if zt,k = 1. Because

zt,k ∈ {0, 1}, this implies max{τAt,k + θBt τ
B
t,k; τBt,k + θAt τ

A
t,k} = Pt,k and thus condition S.2

is satisfied. Finally, constraints (22)-(24) correspond to the GARP conditions for each
individual M (= A or B) (condition S.3 in Proposition 3). Specifically, (22) states that
p′t(q

M
t − qMv ) + τM ′t (Qt − Qv) ≥ 0 implies xMt,v = 1 (or

(
qMt , Qt

)
RM

(
qMv , Qv

)
). Next,

constraint (23) imposes transitivity of the individual revealed preference relations RM : if
xMt,s = 1 (i.e.

(
qMt , Qt

)
RM

(
qMs , Qs

)
) and xMs,v = 1 (i.e.

(
qMs , Qs

)
RM

(
qMv , Qv

)
) then xMt,v = 1

(i.e.
(
qMt , Qt

)
RM

(
qMv , Qv

)
). And (24) requires p′v(q

M
v − qMt ) + τM ′v (Qv−Qt) ≤ 0 if xMt,v = 1

(i.e.
(
qMt , Qt

)
RM

(
qMv , Qv

)
).

Clearly, all constraints are linear for fixed θAt and θBt . Linearity implies that the above
program can be solved by standard MIP methods for a given data set S. See also our
discussion in the main text on conducting a grid search for θAt , θ

B
t ∈ [0, 1].

23The strict inequality p′t(q
M
t −qMv )+τtM ′(Qt−Qv) < xMt,vCt is difficult to use in IP analysis. Therefore,

in practice we can replace it with p′t(q
M
t − qMv ) + τM ′t (Qt −Qv) + ε ≤ xMt,vCt for ε (> 0) arbitrarily small.
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C Computing the goodness-of-fit index f ∗

For our experiment, let S = {pt, Pt, q
M
t , Qt}t∈T,M∈{A,B} represent one data set from the

joint choice experiment and let SM = {ps, Ps, q
M
s , Qs}s∈TM represent one data set from M ’s

individual choice experiment. We write Spool = {S, SA, SB}. Our program will compute the
lowest value of f (see our discussion of Definition 5) such that the data in S (i.e. (25)–(32)
below) as well as all pairwise comparisons of joint bundles t ∈ T and individual bundles
s ∈ TA and u ∈ TB (i.e. (33)–(40)) are consistent with our testable implications. Using
the integer programming formulation of Appendix B, we obtain the test by defining the

binary variables xMt,s ∈ {0, 1}, with xMt,s = 1 interpreted as
(
qMt , Qt

)
R̃M

(
qMs , Qs

)
where R̃M

is the revealed preference relation for individual M ∈ {A,B} (see Definition 5):

For all joint decision situations t, v, w ∈ T , individual decision situations s ∈ TA, u ∈ TB

and public goods k, we look for

• strictly positive vectors τAt , τ
B
t ∈ RK

++,

• binary variables bt,k, xAt,v, x
B
t,v, x

A
t,s, x

B
t,u, x

A
s,t, x

B
u,t ∈ {0, 1},

• parameters θ ∈ [0, 1],

• non-negative numbers cAt , c
B
t , c

A
s , c

B
u ,

that solve

f ∗ = min
∑
t∈T

∑
M∈A,B

(cMt ) +
∑
s∈TA

cAs +
∑
u∈TB

cBu

subject to

τAt + θτBt ≤ Pt, (25)

θτAt + τBt ≤ Pt, (26)

Pt,k − τAt,k − θτBt,k ≤ bt,kCt, (27)

Pt,k − θτAt,k − τBt,k ≤ (1− bt,k)Ct, (28)

qAt + qBt = qt, (29)

and, for each individual M = A,B,

p′t(q
M
t − qMv ) + τM ′t (Qt −Qv)− cMt < xMt,vCt, (30)

xMt,w + xMw,v ≤ 1 + xMt,v, (31)

(1− xMt,v)Cv ≥ p′v(q
M
v − qMt ) + τM ′v (Qv −Qt)− cMv (32)

and, for individual A,

p′t(q
A
t − qAs ) + τA′t (Qt −Qs)− cAt < xAt,sCt, (33)

(1− xAt,s)Cs ≥ p′s(q
A
s − qAt ) + P ′s(Qs −Qt)− cAs , (34)

p′s(q
A
s − qAt ) + P ′s(Qs −Qt)− cAs < xAs,tCs, (35)

(1− xAs,t)Ct ≥ p′t(q
A
t − qAs ) + τA′t (Qt −Qs)− cAt , (36)
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and, for individual B,

p′t(q
B
t − qBu ) + τB′t (Qt −Qu)− cBt < xBt,uCt, (37)

(1− xBt,u)Cu ≥ p′u(qBu − qBt ) + P ′u(Qu −Qt)− cBu , (38)

p′u(qBu − qBt ) + P ′u(Qu −Qt)− cBu < xBu,tCu, (39)

(1− xBu,t)Ct ≥ p′t(q
B
t − qBu ) + τB′t (Qt −Qu)− cBt , (40)

with Ct a given number for which Ct > Pt,k and Ct > Yt for all t, k.

Conditions (25)-(32) are direct translations of conditions (17)-(24), but now taking into
account the goodness-of-fit specification in Definition 5 and implementing the restriction
θA = θB = θ (which we use in our experimental application). Conditions (33)-(40) impose
revealed preference consistency conditions between the joint and individual choices. In
particular, they imposes WARP (Weak Axiom of Revealed Preference) restrictions across
the two choice sets: if a choice from the single choice environment is revealed preferred
over a choice from the joint decision environment, then this joint choice is not also revealed
preferred over the individual choice (and vice versa).24

This optimization problem is solved with θ = 1 to compute f ∗coop, with θ = 0 to compute
f ∗noncoop, and by conducting a grid search for θ ∈ [0, 1] to compute f ∗caring. In our empirical
application, we obtain identification of [θlb, θub] by taking the values of θ from this grid
that yield the smallest objective function value (i.e. the best empirical fit).

24Generally, WARP is a weaker rationalizability requirement than GARP (which we use in Proposi-
tion 3). In theory, imposing GARP on pairwise comparisons between the individual and joint decision
environment could further narrow the bounds on θ. In practice, however, this severely increases the num-
ber of constraints and, hence, the computational burden associated with our rationalizability conditions.
Moreover, for the choice data of our empirical application, using GARP instead of WARP leaves our main
conclusions virtually unchanged.
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