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Abstract

We present a statistical test for the hypothesis of rational utility maximiza-

tion on the basis of nonparametric revealed preference conditions. Our test is

conservative for the utility maximization hypothesis. We take as null hypothesis

that the consumer behaves randomly, and as alternative hypothesis that she is

approximately utility maximizing. Our statistical test uses a permutation method

to operationalize the principle of random consumer behavior. We show that the

test has an asymptotic power of one against the alternative hypothesis of approxi-

mately utility maximizing behavior. We also provide simulated power results and

two empirical applications (to experimental and observational data, respectively).

Keywords: utility maximization, revealed preferences, random behavior, permu-

tation test.

1 Introduction

Do consumers act as rational utility maximizers? Despite the huge surge in behavioral

economics, the assumption of utility maximization remains a cornerstone of most models

∗Department of economics, University of Leuven. E. Sabbelaan 53, B-8500 Kortrijk, Belgium. E-

mail: laurens.cherchye@kuleuven.be. Laurens Cherchye gratefully acknowledges the Fund of Scientific

Research Flanders (FWO-Vlaanderen) and the Research Fund of the KU Leuven for financial support.
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in economics. Given its importance, it is crucial to check whether actual consumer

behavior is at least close to rationality. Revealed preference theory provides an attractive

framework to do so. In his seminal contribution, Afriat (1967) showed that a finite

data set on observed prices and consumed bundles is rationalizable by the model of

utility maximization if and only if it satisfies GARP (Generalized Axiom of Revealed

Preference).1 A most attractive conceptual feature of the revealed preference approach

is that it is intrinsically nonparametric, meaning that it abstains from imposing any,

typically nonverifiable, functional structure on the consumer’s utility function. From a

practical perspective, it has the additional advantage that it can be meaningfully applied

even to small data sets. For example, GARP can be rejected with only two observed

consumption bundles. These two features are why revealed preference methods are

frequently used for testing the hypothesis of utility maximizing consumption behavior.

In applications, revealed preference tests usually start from a finite set of observed

consumption decisions (prices and quantities) for a given individual, and then verify

whether these observations satisfy some combinatorial condition (like GARP). The result

of these deterministic tests is either a ‘yes’ or a ‘no’. A ‘yes’ means that there exists

a utility function that exactly rationalizes all observed consumption choices as utility

maximizing, while a ‘no’ indicates the opposite. However, as argued by Varian (1991),

exact utility maximization might not be a very interesting hypothesis. What we really

want to know is whether consumers exhibit nearly optimizing behavior, meaning that the

rationality hypothesis provides a useful approximation of their observed behavior. As a

response to the sharp nature of the deterministic revealed preference tests, it is nowadays

customary to complement the tests with a goodness-of-fit measure that quantifies how

close the observed behavior is to passing the strict revealed preference conditions. The

most popular measure in the applied literature is Afriat’s Critical Cost Efficiency Index

(CCEI). This CCEI takes values between 0 and 1, with higher values indicating that

behavior is closer to exact utility maximization (see Section 2 for a formal definition).

Intuitively, one minus the CCEI equals the fraction that the consumer is allowed to

waste in each observed consumption decision while still being labeled as approximately

utility maximizing.2

1To be precise, Afriat (1967) originally derived the empirical equivalence between utility maximiza-
tion and a “cyclical consistency” condition. Varian (1982) has shown the equivalence between GARP
and Afriat’s cyclical consistency condition. Afriat (1967) built on earlier work of Samuelson (1938) and
Houthakker (1950). See also Diewert (1973) and Varian (1982) for detailed and insightful discussions
of Afriat’s pioneering article, and Chambers and Echenique (2016) for a recent review of the literature.

2See Choi, Kariv, Müller, and Silverman (2014) and Dziewulski (2019) for more discussion.
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Our contribution. Despite the popularity of the CCEI in applied work, there does

not exist a method that determines the CCEI values for which we can reasonably con-

clude that the model of (approximate) utility maximization provides a good description

of the observed behavior. The current paper aims to fill this gap, by providing a statis-

tical test of individual utility maximization.3 More specifically, we propose to use the

CCEI as a statistic for testing the null hypothesis of irrational, random consumption

behavior against the alternative hypothesis of approximate utility maximization.4 Our

testing method calculates critical CCEI values to determine the statistical support for

the rationality hypothesis.

Our method shifts the burden of proof for the utility maximization hypothesis: we

only reject irrational/random consumer behavior if there is substantially strong evidence

favoring approximate utility maximization. Our default hypothesis is not that the con-

sumer is utility maximizing but, instead, that she is irrational. To be more precise, the

null hypothesis of our test specifies that the consumer’s purchasing decisions cannot be

distinguished from random behavior. As we motivate in more detail in Section 3, we

model irrational behavior by assuming that the consumer randomly draws consump-

tion rays from some distribution that is independent from the budget (i.e. prices and

income).5 Our alternative hypothesis is that the consumer is approximately utility max-

imizing (as characterized by a specific CCEI value). This means that our framework

is conservative for the utility maximization hypothesis. The underlying argument is

that, if a data set cannot be distinguished from random behavior, then it should not be

treated as arising from the process of utility maximization.

Our testing procedure relies on a permutation approach to operationalize the princi-

ple of irrational, random choice behavior.6 The idea of the test is fairly straightforward.

For a given data set on prices and quantities, we consider the population of data sets

3Existing studies have developed statistical tests of utility maximization for populations of individ-
uals. See, for example, the recent paper of Kitamira and Stoye (2018). In this study, we focus on
individuals rather than populations of individuals.

4We focus on the CCEI as our test statistic as this measure is well-known and easily computable.
Importantly, however, the use of our testing method is not restricted to the CCEI. One may equally
well use other goodness-of-fit measures that have been proposed in the revealed preference literature.
Examples include the Houtman-Maks index (Houtman and Maks, 1985), the Varian index (Varian,
1991), the money pump index (Echenique, Lee, and Shum, 2011), the swaps index (Apesteguia and
Ballester, 2015) or the minimum cost index (Dean and Martin, 2016).

5For a given consumption bundle (q1, . . . , qL) containing L goods, the consumption ray equals the
vector (r1, . . . , rL) where ri = qi∑L

j=1 qj
. Plotting all consumption bundles with the same ray vector

(r1, . . . , rL) obtains a line (ray) through the origin that passes through the bundle (q1, . . . , qL). Impor-
tantly, our procedure is readily adapted to apply to alternative models of irrational/random behavior
(for example, drawing random budget shares). In this respect, we refer to our discussion on specifying
the null hypothesis of our statistical test in Section 3.

6See, for example, Pesarin and Salmaso (2010) for a review of the permutation testing approach.
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that is obtained by fixing the budgets but permuting the consumption rays over the

different observations. If the consumer is really randomizing, then the CCEI of the

observed data set is equally likely to be realized as any CCEI of these permuted data

sets. As such, the distribution of the CCEIs over the permuted data sets provides the

distribution for the CCEI of the true data set under the null hypothesis, conditional on

the realized observations of prices and quantities.

As our test belongs to the family of permutation tests, it has the specific advantage

that it is exact for any sample size. This is particularly convenient in the current set-

ting, as individual revealed preference tests are usually conducted for a small number

of observations. For example, our own empirical exercises consider real-life panel data

with 26 waves per subject and experimental data with 50 choice observations per sub-

ject. In this regard, we also establish a theoretical lower bound on the power of our

permutation test with respect to the alternative hypothesis that the observed behavior

is approximately utility maximizing. This lower bound converges to one as the number

of observations increases.

Relation to power and predictive success. Our approach shares some resem-

blance with Bronars’ (1987) procedure for measuring the power of revealed preference

tests. Similar to our procedure, Bronars’ power index starts from the idea that irrational

behavior can be modeled as random behavior.7 Computing this index starts by gener-

ating a large number of random data sets, and the index is calculated as the fraction of

these random data sets that violate (approximate) utility maximization. In the opera-

tionalization of Bronars’ procedure, random behavior is usually simulated by drawing

consumption bundles at random from the budget hyperplane. This, however, implies an

ad hoc reliance on some distribution to simulate random behavior, and different distri-

butions may generate different power results. In addition, the chosen distribution may

bear little resemblance to the actual distribution of consumption, even if the consumer

is truly drawing consumption bundles at random. By contrast, our notion of irrational

behavior allows subjects to draw consumption rays at random from any distribution.

From this perspective, our permutation method is more closely related to the ‘boot-

strap’ method that has also been used for measuring the power of revealed preference

tests (see, for example, Andreoni and Miller (2002)). Although this bootstrapping

approach does away with the reliance on some arbitrary distribution, it has –to our

knowledge– no theoretical grounding. Another main difference with our procedure is

that these power measures are designed to produce an index of the strictness of deter-

ministic revealed preference tests. Lower index values then indicate that the collection

7This idea goes back to Becker (1962).
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of observed budget sets only allows for rather weak revealed preference tests and, there-

fore, does not allow for strong statements favoring the rationality hypothesis. Unlike

our method, however, the Bronars or bootstrap index cannot be used directly to test

whether or not a particular consumer is a utility maximizer.

Another popular measure in empirical revealed preference analysis is Beatty and

Crawford (2011)’s predictive success measure, which is based on an original idea of

Selten (1991). This measure is computed as the difference between the pass rate of a

revealed preference test (from a population of data sets) and one minus Bronars’ power

index of this test. Predictive success values close to zero imply that the pass rate for the

observed data sets is close to the pass rates for the population of randomly generated

data sets. By contrast, values close to one point out that (almost) all observed data

pass the revealed preference tests, while the opposite holds for random data. Finally,

values below zero indicate that random behavior performs better than actual behavior on

the revealed preference tests. Summarizing, Beatty and Crawford’s predictive success

measure tells us how well a revealed preference test can distinguish between actual

behavior and random behavior. However, it remains silent about whether a particular

individual behaves according to the utility maximization model or what critical values

are to be used to reach that conclusion. This is exactly the distinguishing feature of

our procedure. In this sense, we see the two procedures as complementary, each one

highlighting a different aspect of the data.

Outline. The remainder of this paper unfolds as follows. Section 2 sets the ground

by introducing some basic concepts, and by giving an example that motivates our test.

Section 3 formally presents our statistical testing procedure. Section 4 derives a theo-

retical lower bound on the power of our statistical test. Section 5 discusses simulated

power results and provides two empirical applications (on experimental and observa-

tional data, respectively). Section 6 contains our conclusion. All our proofs are in the

Appendix.

2 Basic concepts

We start by briefly introducing some necessary concepts and notation. Throughout,

we will consider a consumption setting with L goods. A revealed preference analysis

usually departs from a finite set of observed prices pt = [pt1, . . . , p
t
L] ∈ RL

++ and associated

quantities qt = [qt1, . . . , q
t
L] ∈ RL

+. The idea is that, at each observation t, the consumer

purchased the bundle qt under the prevailing prices pt. A data set is denoted by D =

(qt, pt)t≤T .
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GARP and CCEI. We say that the bundle qt is revealed preferred to the bundle qv

if pt · qt ≥ pt · qv. We denote this by qtRqv. In words, the bundle qt was chosen at

observation t while qv was also attainable (for the given expenditure pt · qt and prices

pt). Similarly, a bundle qt is strictly revealed preferred to qv if pt · qt > pt · qv, which we

denote by qt P qv. Intuitively, qt was chosen although qv was equally affordable together

with some additional money left for the consumer.

A data set D satisfies the Generalized Axiom of Revealed Preference (GARP) if there

is no ‘strict’ cycle in the revealed preference relation: for any sequence of observations

t1, . . . , tM ≤ T ,

qt1 Rqt2 R . . . R qtM implies not qtM P qt1 .

Afriat (1967) has shown that the observed behavior (captured by the data set D)

can be rationalized as maximizing a well-behaved (i.e. increasing, continuous and quasi-

concave) utility function if and only if the set D satisfies GARP.

If a data set does not satisfy GARP, we may consider a weakening of the sharp

GARP condition. As indicated in the Introduction, a popular way to do so makes use

of the Critical Cost Efficiency Index (CCEI). To formally define this CCEI, we consider

the relations qtRe qv if e(pt · qt) ≥ pt · qv and qt P e qv if e(pt · qt) > pt · qv, which make use

of a prespecified ‘efficiency’ value e ∈ [0, 1]. Intuitively, the revealed preference relations

Re and P e imply a weakening of the relations R and P , as qt is now said to be (strictly)

revealed preferred to qv only if qv was available when the budget at observation t was

decreased by a fraction (1 − e). We say that a data set D satisfies e-GARP if, for all

sequences of observations t1, . . . , tM ≤ T ,

qt1 Re qt2 Re . . . Re qtM implies not qtM P e qt1 .

Obviously, for e = 1 we have that e-GARP coincides with GARP. Moreover, any

data set satisfies e-GARP for e = 0. More generally, if a data set D satisfies e-GARP,

then it will satisfy e′-GARP for any efficiency value e′ ≤ e. This calls for defining the

highest value of e such that a data set still satisfies e-GARP. This value gives us the

CCEI, which we denote by τ(D) for a data set D:

τ(D) = sup{e ∈ [0, 1] : D satisfies e-GARP}.

Varian (1990) proposed the CCEI as a goodness-of-fit measure in empirical revealed

preference analysis. The higher the value of the CCEI, the closer the observed data set

is to satisfying GARP. As indicated in the Introduction, one minus the CCEI equals the

fraction that the consumer is allowed to waste in each observed consumption decision,
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while still being labeled as approximately utility maximizing.

Critical CCEI value. A natural question is whether an observed CCEI value is

sufficiently high to conclude that the decision maker is approximately utility maximizing

and not just picking consumption bundles at random. In the literature, there is no

consensus on what value the CCEI should minimally attain to conclude that behavior is

(approximately) rational. Varian (1991) mentions the critical value of 0.95, but admits

that this is mainly out of sentimental reasons. Choi, Fisman, Gale, and Kariv (2007)

use 0.90 based on their results for Bronars’ power procedure. Particularly, for their

application these authors find that the CCEI is below 0.90 for most randomly generated

data sets (using the uniform distribution to simulate random behavior). Most of the

other papers in the literature tend to use cut-offs of 0.90, 0.95 or 0.99 (see for example

Polisson, Quah, and Renou (2020)).

In the current paper, we set out a framework to define an individual-specific cut-off

that is determined as the critical value of a statistical test. To determine this cut-off,

we consider a data set that is obtained by random choice. Random choice is modeled

by fixing the various budgets but permuting the consumption rays over the different

observations. Figure 1 provides an illustration for three observations and two goods.

The budgets are given by the solid lines and the bundles are represented by squares.

Assume that we observe a consumer who picks the consumption bundles according to

the top left panel of the figure. The observed data set then produces three consumption

rays depicted by the dashed lines through the origin. If the consumer were irrational and

picked her consumption rays from some random distribution, the observed consumption

pattern would be equally likely as any consumption pattern in the other 5 panels of

Figure 1, which are obtained by permuting the three observed consumption rays over

the observed budgets.

Let us denote a permuted data set by Dσ (see Section 3 for a formal definition),

and the corresponding CCEI value by τ(Dσ). If the individual chose her consumption

bundles by randomly picking rays from some distribution then, conditional on the ob-

served rays, the probability of observing the data set D must have the same likelihood

as observing the data set Dσ. This is the main idea behind our permutation test. To

put this into practice, we compute the CCEI values for all possible data sets that are

obtained by permuting the consumption rays over the observations. If actual behavior

picked consumption rays at random, then the CCEI value for the true data set would

be a random draw from the distribution of all these CCEI values. Thus, we can reject

the hypothesis of random behavior at the significance level α if at most a fraction α of

all the permuted data sets have a CCEI value above or equal to τ(D).
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Figure 1: Permuting consumption rays

Example. Figure 2 shows an artificial data set with nine observations and two goods.

This data set violates GARP but only to a small degree. In particular, we have that

τ(D) = 0.984, indicating that the CCEI is quite close to one. When computing the

CCEI for all 362 880 permuted data sets, we find that 2.49% of these data sets have a

CCEI that is at least as high as τ(D) = 0.984. In other words, the p-value for the null

hypothesis that the consumer was randomly picking consumption shares is 0.0249. We

conclude that the null of random consumer behavior cannot be rejected at a significance

level of 1%, while it is rejected at the 5% or 10% level.

3 Permutation test

Like before, we assume L goods, and we consider a data set D = (qt, pt)t≤T that consists

of T quantities qt ∈ RL
+ and associated prices pt ∈ RL

++. A data set contains a fixed

number of observations, and we assume that each set D is drawn from a probability
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Figure 2: Example

space (Ω,B, P ), where

Ω =
{

(qt, pt)t≤T ∈
(
RL

+ × RL
++

)T}
,

is the set of all possible data sets, B is the Borel sigma-algebra on Ω (i.e. the sigma-

algebra generated by the closed subsets of Ω), and P is a probability measure on (Ω,B).

For a given observation t, with quantity-price vector (qt, pt), we can define the vector

rt = [rt1, . . . , r
t
L] ∈ RL

+ as

rti =
qti∑L
j=1 q

t
j

.

We call rt the ray of the bundle qt. Next we define the total expenditure at observation

(qt, pt) as mt =
∑L

i=1 p
t
iq
t
i . Note that there is a one-to-one relationship between the

observed vector (qt, pt) and the triple (rt, pt,mt).8 Given this equivalence, we will often

use D = (qt, pt)t≤T and D = (rt, pt,mt)t≤T interchangeably in what follows.

Null hypothesis. As described above, our statistical test concentrates on two types

of consumers: (approximate) utility maximizers and random consumers. We take as null

hypothesis that the observed data set D was generated by a consumer who randomly

draws consumption rays from some distribution.

8The bundle qt can be derived from the ray rt and the budget mt by the transformation qti =

rtim
t/(
∑L
j=1 p

t
jr
t
j).
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Definition 1. A probability measure P on (Ω,B) is consistent with random consumption

rays if, for every random data set D = (rt, pt,mt)t≤T and any observation t, rt is

drawn from a distribution that is independent of t, independent from all prices (pv)v≤T

and independent from all income levels (mv)v≤T . We denote by P0 the set of all such

probability measures.

Definition 1 specifies that a consumer behaves irrationally when her consumption

choices are defined by randomly picking consumption rays from a particular distribu-

tion, irrespective of the particular observation or the observed prices and income levels.

At this point, we remark that our null hypothesis does not necessarily exclude utility

maximizing behavior. For example, a consumer with a Leontief utility function (i.e.

perfect complements) will always consume on a fixed ray and, therefore, her choices

will coincide with choosing a ray from a distribution with a point mass of one at a sin-

gle ray vector. Except from such fairly pathological cases, however, our null hypothesis

does exclude rational behavior as consumption will usually depend on prices and income

levels.

We acknowledge that the random rays null hypothesis that we use represents only one

of many possible ways to model random behavior. For example, Becker (1962), Bronars

(1987) and Beatty and Crawford (2011) equate random behavior as picking budget

shares instead of rays. Our test can easily be altered to allow for a null hypothesis

where the consumer selects random budget shares instead of random consumption rays.

This random shares hypothesis models a consumer who randomizes over the fractions

of her budget she wishes to allocate to each commodity without actually looking at the

underlying price. This can reasonably be thought to describe a consumer making choices

over aggregated categories of goods. For example, one might imagine a consumer who

decides to spend 20 percent of the budget on food, 30 percent on energy, and so forth.

To some extent, the rays versus shares hypothesis appears to relate to the aggregation

level of the goods. If we investigate purchase behavior at the micro level (over particular

goods) the rays hypothesis seems more natural: in order to make meals, one usually

needs to buy ingredients in fixed proportions. The total amount of food produced will

then determine the budget and the distribution over meals determines the distribution

over rays. On the other hand, when looking at consumption allocations over more

aggregated group categories, then the shares hypothesis might be more appropriate. As

the goods in our empirical exercises in Section 5 do not involve a substantial amount of

aggregation, we prefer to stick to the random rays hypothesis as being more appropriate

for these applications.
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Alternative hypothesis. As alternative hypothesis we use that the consumer is ap-

proximately utility maximizing. As we informally introduced in Section 2, we consider

a general type of approximate utility maximization that accounts for the possibility

of small inefficiencies in consumer behavior, which is captured by an efficiency level

e ∈ [0, 1]. Higher e-values indicate that the consumer is closer to utility maximization.

More specifically, we use the following definition.

Definition 2. Let U : RL → R be a well-behaved (i.e. increasing, continuous and quasi-

concave) utility function. Let EU,e ⊆ Ω be the set of all data sets D = (qt, pt)t≤T ∈ Ω

such that

U(qt) ≥ max
q̃
U(q̃) s.t. pt · q̃ ≤ e (pt · qt), ∀t ≤ T. (1)

We say that the probability measure P on (Ω,B) is consistent with e-utility maximization

if there exists a well-behaved utility function U such that

P
(
D ∈ EU,e

)
= 1.

We denote the set of all measures P that are consistent with e-utility maximization by

Pe1 .

The set EU,e in this definition contains all data sets D such that the utility U(qt)

received at observation t equals at least the maximally attainable utility after removing

a fraction (1 − e) from the consumer’s budget.9 Definition 2 states that a probability

measure P is consistent with e-utility maximizing behavior if it assigns, for a well-

behaved utility function U , a probability of unity to drawing a data set from EU,e.

The following result connects the concept of e-utility maximization in Definition 2

to the e-GARP concept (and, thus, the CCEI) that we introduced in Section 2.10

Theorem 1. Let e ∈ [0, 1] and D = (qt, pt)t≤T a data set in Ω. Then, there exists a

well-behaved utility function U such that D ∈ EU,e if and only if D satisfies e-GARP.

From Theorem 1 we obtain that, if P ∈ Pe1 , then any data set D drawn from the

probability space (Ω,B, P ) must satisfy e-GARP with probability one and, thus, have

a CCEI value that is at least equal to e. Indeed, if P ∈ Pe1 , then we know that there

exists a well-behaved utility function U such that

1 = P (D ∈ EU,e) ≤ P (D satisfies e-GARP) ≤ P (τ(D) ≥ e),

9Given continuity of U , one can show that the set EU,e is closed, so it is measurable.
10Although Theorem 1 is well-known and fairly intuitive, we are not aware of any formal proof in the

literature. Therefore, we have included a proof in Appendix A.1.
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where the first inequality follows from Theorem 1 and the second from our definition of

the CCEI. Conversely, if P (τ(D) ≥ e) < 1, then it must be that P /∈ Pe1 .

Hypothesis test. Summarizing, our statistical test considers the following hypothesis:

H0 : P ∈ P0, i.e. the consumer is a random consumer.

H1 : P ∈ Pe1 , i.e. the consumer is a e-utility maximizer, for some e ∈ [0, 1].

We now formally introduce our statistical procedure to test H0 against H1. Let σ

represent a permutation on {1, . . . , T}. Then, we define a permuted data set Dσ as

Dσ =
(
rσ(t), pt,mt

)
t≤T ≡

((
rσ(1), p1,m1

)
, . . . ,

(
rσ(T ), pT ,mT

))
.

Let Π denote the set of all permutations on {1, . . . , T}. The total number of permu-

tations in Π equals T !. Then, our testing procedure goes as follows.

Procedure 1. Let α ∈ (0, 1). Reject H0 : P ∈ P0 in favor of H1 : P ∈ Pe1 at the

significance level α if

φα(D) = 1,

where

φα(D) = 1


∣∣∣{σ ∈ Π : τ(Dσ) ≥ τ(D)

}∣∣∣
T !

≤ α


and 1[.] is the indicator function that equals 1 if the expression between brackets is true

and 0 otherwise.

In words, our testing procedure considers all possible permutations Dσ of the data

set D. We then compute the fraction of permuted data sets of which the CCEI (i.e.

τ(Dσ)) is at least as high as the CCEI of the actual data set (i.e. τ(D)). If this fraction

is less than or equal to α, then we reject the null hypothesis at the significance level α.

The next result motivates the theoretical validity of Procedure 1, by showing that

the probability of making a Type-1 Error is at most α.11

Theorem 2. Let α ∈ (0, 1) and P ∈ P0. Then,

P (φα(D) = 1) = EP [φα(D)] ≤ α.

11From the continuity of the CCEI measure τ(D), it follows that φα is a measurable function.
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4 Statistical power

Theorem 2 motivates our permutation test by characterizing its size. However, it may

still be that the test has low power, i.e. the probability of rejecting the null hypothesis

might be low even if the consumer is actually approximately utility maximizing. To

address this issue, we establish a theoretical lower bound on the statistical power of our

permutation test. We also specify conditions under which this lower bound converges

to one when the sample of observations grows.

Given that our power result relies on large sample statistics, we need to limit ourselves

to a somewhat more restrictive data generating process. In particular, we assume that

the various observations in a data set are i.i.d. draws from some common distribution.12

Towards this end, we fix a probability space (Ω̂, B̂, P̂ ), where

Ω̂ = {(q, p) ∈ RL
+ × RL

++},

B̂ is the Borel sigma-algebra on Ω̂, and P̂ is a probability measure on (Ω̂, B̂). From now

on, we assume that a random data set of size T is obtained by taking T independent

draws from (Ω̂, B̂, P̂ ). In other words, D = (qt, pt)t≤T is a random draw from the product

probability space (Ω̂T , B̂T , P̂T ), where

Ω̂T = Ω̂× Ω̂× . . .× Ω̂︸ ︷︷ ︸
T times

,

B̂T = B̂ ⊗ B̂ ⊗ . . .⊗ B̂︸ ︷︷ ︸
T times

,

P̂T = P̂ × P̂ × . . .× P̂︸ ︷︷ ︸
T times

.

Given a well-behaved utility function U , we let ÊT
U,e

be the set of observations for

which

U(qt) ≥ max
q̃
U(q̃) s.t. pt · q̃ ≤ e(pt · qt), ∀t ≤ T,

and we can define P̂eT,1 to be the set of all probability distributions P̂T on (Ω̂T , B̂T ) such

that

P̂T

(
(q, p)t≤T ∈ ÊT

U,e
)

= 1,

for some well-behaved utility function U . Our alternative hypothesis is that P̂T ∈ P̂eT,1
12This i.i.d. assumption may seem restrictive, especially for real-life data, where it is known that prices

exhibit some persistence. On the other hand, for experimental settings where budgets are generated at
random, this i.i.d. assumption is quite natural.
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for some e ∈ [0, 1].

Now let us fix an efficiency level e ∈ [0, 1] and consider a probability measure P̂T

in agreement with the alternative hypothesis, i.e. P̂T ∈ P̂eT,1. Further, we let D =(
(r1, p1,m1), (r2, p2,m2)

)
be a data set of size 2 that is drawn randomly from (Ω̂2, B̂2, P̂2).

Then, consider the permuted data set

D̃ =
(
(r2, p1,m1), (r1, p2,m2)

)
.

As before, it directly follows that

1 = P̂2

(
D ∈ ÊU,e × ÊU,e

)
≤ P̂2

(
D satisfies e-GARP

)
≤ P̂2(τ(D) ≥ e).

On the other hand, as D̃ was obtained by permuting the original consumption rays,

it may well be that the event τ(D̃) ≥ e has a probability below one. Let us define

π̃e = P̂2

(
τ(D̃) ≥ e

)
.

Next, let D =
(
(r1, p1,m1), (r2, p2,m2), (r3, p3,m3)

)
be a data set of size 3 that is

drawn randomly from (Ω̂3, B̂3, P̂3), and consider the permuted data set D of size 2 that

is obtained from D as

D =
(
(r2, p1,m1), (r3, p2,m2)

)
.

Similar to before, we define

πe = P̂3

(
τ(D) ≥ e

)
.

Again, it is quite likely that πe < 1. The next result shows that, if both π̃e and πe

are below one, then the asymptotic power of our permutation test for the alternative

hypothesis P̂ ∈ P̂e1 equals unity. More generally, the result defines a theoretical lower

bound on the power of our test.

Theorem 3. Let α ∈ (0, 1) and e ∈ [0, 1]. Further, let D be a data set of size T that

is drawn randomly from (Ω̂T , B̂T , P̂T ). Assume that P̂T ∈ P̂eT,1. Then, the probability of

not rejecting the null hypothesis under P̂T is bounded by

P̂T
(
φα(D) = 0

)
= EP̂T

(
1− φα(D)

)
≤ 4

α
(πe)

T
4 ,
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where

πe = max(π̃e, πe, 1/2).

5 Empirical exercises

Theorem 3 is a large sample result. In what follows, we first conduct a simulation

exercise that investigates the power of our permutation test in the finite sample case.

Subsequently we demonstrate the empirical usefulness of our testing procedure by ap-

plying it to the experimental data set of Fisman, Kariv, and Markovits (2007) and

the real-life Stanford Basket data set that was also used by Echenique, Lee, and Shum

(2011). To illustrate the versatility of our approach, we end by exploring the added

value of considering the more restricted class of quasi-linear preferences.

The permutation test that we outlined in Section 3 starts by calculating the CCEI

τ(D) for a data set D of observed prices and quantities associated with a single con-

sumer. Subsequently, it permutes the budget rays across observations, and computes

the CCEI τ(Dσ) for each permuted data set Dσ. This means that we must compute

τ(Dσ) for each of the (T !) possible permutations σ. However, for large enough data

sets, this quickly becomes computationally intractable. For example, for a data set of

50 observations, this requires (50!) ≥ 3 × 1064 permutations. To ensure computational

feasibility, it is standard practice in the literature on permutation tests to take a large

enough sample of random permutations when the number of observations becomes too

large. In our following exercises, our test uses all possible permutations when the num-

ber of observations equals at most 7. In the other cases, we randomly sample 10 000

permutations with replacement. In order to speed up our computations, we further

employ the following ‘heuristic’: if after running the test using 1 000 permutations we

find a p-value strictly greater than 0.2, we abort the test and report the results using

only these 1 000 permutations. This saves us the trouble of refining our p-value when

there is little chance of ever approaching the 10% significance level.

The CCEI-value of a data set is computed using a standard binary search algorithm.

We choose the number of iterations that guarantees that the CCEI is calculated to

within an error of 2−17 of the true value. We make sure to always test the data set for

GARP so that if the data set is perfectly rationalizable, we return a CCEI value of 1.

Simulated data. To compute the power of our test, we need to generate data that

are consistent with e-GARP for chosen values of e. To generate a budget set when

there are L goods we start by drawing L numbers uniformly from the interval [1, 10].

15



e = .99

α
T 0.10 0.05 0.01

L = 2 6 0.12 0.02 0.00
8 0.55 0.22 0.00

10 0.88 0.63 0.14
14 1.00 1.00 0.81
20 1.00 1.00 1.00

L = 4 6 0.25 0.06 0.00
8 0.93 0.61 0.06

10 1.00 0.96 0.43
14 1.00 1.00 1.00
20 1.00 1.00 1.00

L = 8 6 0.58 0.25 0.01
8 0.99 0.87 0.18

10 1.00 1.00 0.88
14 1.00 1.00 1.00
20 1.00 1.00 1.00

L = 16 6 0.79 0.53 0.08
8 1.00 0.98 0.50

10 1.00 1.00 0.97
14 1.00 1.00 1.00
20 1.00 1.00 1.00

e = .95

α
T 0.10 0.05 0.01

L = 2 6 0.07 0.02 0.00
8 0.34 0.08 0.00

10 0.77 0.44 0.03
14 0.98 0.90 0.53
20 1.00 1.00 0.96

L = 4 6 0.25 0.07 0.00
8 0.81 0.49 0.01

10 0.96 0.89 0.34
14 1.00 1.00 0.96
20 1.00 1.00 1.00

L = 8 6 0.53 0.22 0.01
8 0.97 0.82 0.18

10 0.99 0.99 0.76
14 1.00 1.00 1.00
20 1.00 1.00 1.00

L = 16 6 0.82 0.45 0.12
8 1.00 0.95 0.45

10 1.00 1.00 0.95
14 1.00 1.00 1.00
20 1.00 1.00 1.00

e = .90

α
T 0.10 0.05 0.01

L = 2 6 0.03 0.00 0.00
8 0.25 0.07 0.00

10 0.63 0.39 0.03
14 0.92 0.75 0.24
20 1.00 0.99 0.80

L = 4 6 0.22 0.04 0.00
8 0.68 0.34 0.02

10 0.86 0.68 0.16
14 1.00 1.00 0.77
20 1.00 1.00 0.99

L = 8 6 0.40 0.15 0.01
8 0.89 0.75 0.09

10 0.98 0.90 0.60
14 1.00 1.00 0.95
20 1.00 1.00 1.00

L = 16 6 0.82 0.48 0.05
8 1.00 0.95 0.53

10 1.00 1.00 0.95
14 1.00 1.00 1.00
20 1.00 1.00 1.00

Table 1: Power for simulated data

Denote these numbers by α1, . . . , αL. Next, for each good i we set the price to 10/αi,

and we set the expenditure level for the budget equal to 10. This ensures that if the

consumer allocates her income to good i, she could purchase exactly αi units. Once the

budgets are selected, we generate 100 random data sets satisfying e-GARP by using the

algorithm set out in Appendix B.

Table 1 contains the simulation results for various numbers of goods (L = 2, 4, 8, 16)

and different number of observations (T = 6, 8, 10, 14, 20). The different cells reveal the

power of our statistical test for alternative combinations of L, T , e and α. For example,

the cell (T = 8, L = 2 with e = 0.99 and α = 0.10) has a value 0.55. This says that

for 55 percent of our simulations, we reject the null hypothesis at the 10%-significance

level. Generally, we find that the power of our permutation test increases in the number

of goods (L) and the number of observations (T ). The power is close to 1 as soon as

we have 20 observations. We conclude that our test has sufficient power whenever T

is moderately large. This especially holds true when the number of goods L also gets

large.

Experimental data. An advantage of experimental data is that they allow for gath-

ering a high number of consumption observations for one and the same individual at low

cost. In addition, the experimental designer has full control over the various budgets

faced by the experimental subjects. This type of data is exactly in line with the set-

ting in our simulation exercise above, which motivates that our procedure has sufficient

power.

We illustrate this for the data set on giving versus keeping of Fisman, Kariv, and

Markovits (2007). This experiment was designed to investigate individual preferences
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for giving by exposing subjects to a series of dictator games under varying incomes and

conversion rates between giving and keeping.13 The data set has two components. The

first component contains information for 76 subjects (i.e. 76 consumers) on 50 choices

between keeping and giving to one other individual (i.e. 2 goods), and the second

component contains information for 65 subjects on choices between keeping and giving

to either individual A or individual B (i.e. 3 goods). We refer to Fisman, Kariv, and

Markovits (2007) for more details on the data.

Table 2 summarizes our results. Attractively, we find that the experimental data

allow us to statistically discriminate between utility maximizing and random behavior.

All rejection rates are well above the nominal significance levels, even without imposing

specific additional structure on the consumers’ utility functions (see also below). For

instance, we reject the null hypothesis of random choice behavior at the 0.01 significance

level for 72% of the subjects (for the choices with 2 goods) and 83% of the subjects (for

the choices with 3 goods). In our opinion, this convincingly demonstrates that our

permutation test can have substantial empirical bite in practice.

Real-life data. We next study the Stanford Basket data set that was also used by

Echenique, Lee, and Shum (2011). This data set captures consumer expenditures on 14

types of goods that fall in the “food” category, covering the period from June 1991 to

June 1993 (i.e. 104 weeks). There are 494 consumers and, after aggregating up to brand

level and dropping goods which have no price data for some weeks, we retain a total of

430 goods. We aggregate the data so that one period represents 4 weeks, resulting in

a maximum of 26 periods per participant. All our aggregation steps follow Echenique,

Lee, and Shum (2011).

If we compute CCEI values for the 494 consumers in the Stanford Basket Data set,

we find that 416 (84.2%) have a CCEI value below unity, i.e. they violate the sharp

GARP condition. Still, we find that the CCEI values are generally high. The average

CCEI equals 0.9504, with a standard deviation of 0.0578. Although the minimum CCEI

value equals no more than 0.4278, we observe that the first quartile, median and third

quartile amount to 0.93, 0.97 and 0.99. This may suggest that the observed behavior is

generally close to approximate utility maximization.

Our test procedure allows us to investigate the statistical support for this claim. In

particular, we can use our procedure to assess for which subjects we reject the null of

random behavior. The results of this exercise are also given in Table 2. Generally, we

13In particular, subjects made several choices by filling in questions of the form: “Divide X tokens:
Hold at a points, and Pass at b points (the Hold and Pass amounts must sum to X)”.
The parameters X, a and b were varied across the decision problems.
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find that the statistical support for utility maximizing behavior is rather weak when

using a significance level of 1%, with a rejection rate of only 10%. The picture is

somewhat more nuanced for the 10% significance level, with a rejection rate of 40%.

Quasi-linear preferences. One possible conclusion from these results in Table 2

is that the restrictions imposed by nearly utility maximizing behavior are often not

sufficiently restrictive to significantly distinguish such behavior from purely random

behavior. So many types of behavior can count as approximate utility maximization

that it is often hard to differentiate it from randomness. To explore this in more detail,

we applied our testing procedure when using the (stronger) alternative hypothesis of

approximate utility maximization with quasi-linear preferences. Particularly, we say

that a utility function U is quasi-linear if there exists an outside good y such that we

can write

U(q, y) = V (q) + y.

The model of quasi-linear utility maximization is substantially more restrictive than

the standard utility maximization model. As such, if people effectively behave like

approximate quasi-linear utility maximizers, we should more easily detect this when

using an appropriate statistical test. For this exercise, we make use of the revealed

preference characterization of quasi-linear utility maximization that was developed by

Brown and Calsimiglia (2007, Theorem 2.2), which we adapt to our particular setting.14

As expected the goodness-of-fit of this more restricted model, measured once more

by the CCEI, is significantly lower. In this case, the first quartile, median and third

quartile amount to respectively 0.7875, 0.8390 and 0.8810. Next, the results of our

statistical test are again summarized in Table 2. It is interesting to note that there

are many people for which we reject the null in favor of the alternative hypothesis of

nearly quasi-linear utility maximization, but not in favor of the standard nearly utility

maximization model, particularly when using a significance level of 1%. This shows

that it might often be useful to focus on a more restricted class of utility functions to

verify the utility maximization hypothesis. If the observed behavior is consistent with

a more restrictive utility maximization model, it will generally be easier to distinguish

such optimizing behavior from purely random behavior.

14Specifically, the CCEI for quasi-linear utility maximization can be calculated by testing the data
for cyclical monotonicity (as defined in Brown and Calsimiglia (2007)), which is the approach we take
here.
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Experimental data Real-life data

Rejection rates Rejection rates Rejection rates Rejection rates
Sign. level Gen. pref., 2 goods Gen. pref., 3 goods Gen. pref. Quasi-linear pref.

α = 0.10 0.88 0.94 0.40 0.49
α = 0.05 0.82 0.92 0.30 0.39
α = 0.01 0.72 0.83 0.10 0.24

Table 2: Rejection rates for experimental and real-life data

6 Conclusion

We present a novel statistical testing procedure for the hypothesis of (approximately)

utility maximization on the basis of nonparametric revealed preference conditions. It

allows us to compute critical values for the CCEI for which we cannot reject the hy-

pothesis of rationality for the observed data. A specific feature of our test procedure

is that it shifts the burden of proof: we only reject random consumption behavior if

there is substantially strong evidence favoring utility maximizing behavior. We take

as null hypothesis that consumers behave randomly, and as alternative hypothesis that

consumers are approximate utility maximizers. Our statistical test makes use of a per-

mutation method to operationalize the principle of randomization. This permutation

procedure is also valid for small samples and allows us to characterize a theoretical lower

bound on the power of the test.

We illustrate the practical usefulness of our test for both experimental and observa-

tional scanner data. Our application to experimental data shows the use of experiments

to statistically discriminate between utility maximizing and random behavior. A main

advantage of experimental data is that it allows for gathering a high number of con-

sumption observations for one and the same individual at low cost. This can yield a

strong statistical test even when focusing on the standard utility maximization model.

Finally, our application to real-life data illustrates the possibility of adding additional

structure on the preferences of the consumer (in our case, quasi-linearity) to strengthen

the test. If the observed behavior is (approximately) utility maximizing for such more

structured preferences, it will generally be easier to statistically distinguish optimizing

behavior from random behavior.
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A Proofs

A.1 Proof of Theorem 1

Let D = (qt, pt)t≤T ∈ EU,e. Then, for all t ≤ T ,

U(qt) ≥ max
q̃
U(q̃) s.t. pt · q̃ ≤ e(pt · qt).

Let qtReqv, i.e. e(pt · qt) ≥ pt · qv. Then, U(qt) ≥ max{q̃:pt·q̃≤e(pt·qt)} U(q̃) ≥ U(qv), so

U(qt) ≥ U(qv). Similarly, we can show that qtP eqv implies U(qt) > U(qv). Then, if

e-GARP is violated, we have that there is a sequence t1, . . . , tM ≤ T such that

qt1Re . . . ReqtM and qtMP eqt1 .
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However, this implies

U(qt1) ≥ . . . ≥ U(qtM ) and U(qtM ) > U(qt1),

a contradiction.

For the reverse, let D = (qt, pt)t≤T satisfy e-GARP. From Fostel, Scarf, and Todd

(2004), we know that there exist numbers U t and λt > 0 such that, for all observations

t, v ≤ T ,

U t − U v ≤ λvpv · (qt − eqv). (2)

Consider the utility function

V (q) = min
t≤T

{
U t + λtpt · (q − eqt)

}
.

The function V is increasing, continuous and concave. Let us first show that V (qt) ≥ U t.

If not, there must exist an observation v such that

V (qt) = U v + λv(qt − eqv) < U t.

However, this contradicts equation (2). Now, towards a contradiction, assume that

D /∈ EV,e. Then, there is an observation t such that

V (qt) < max
q̃
V (q̃) s.t. pt · q̃ ≤ e(pt · qt).

Let q̃∗ solve the maximization problem on the right hand side. Then,

U t ≤ V (qt)

< V (q̃∗)

≤ U t + λtpt · (q̃∗ − eqt)

= U t + λt(pt · q̃∗ − e(pt · qt))

≤ U t,

a contradiction.
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A.2 Proof of Theorem 2

Fix α ∈ (0, 1) and let P ∈ P0. Then, given the definition of P0, it is clear that under P

the random data set D and the permuted data set Dσ have the same distribution: for

all measurable sets A ∈ B and all permutations σ ∈ Π,

P (D ∈ A) = P (Dσ ∈ A).

As such, we have that, for all σ ∈ Π,

EP (φα(D)) = EP (φα(Dσ)),

and

EP (φα(D)) =
1

T !

∑
σ∈Π

EP (φα(Dσ))

=
1

T !
EP

[∑
σ∈Π

φα(Dσ)

]
,

where the last equality follows from exchanging integration and summation. For the

sum within the expectation sign, we have

∑
σ∈Π

φα(Dσ) =
∑
σ∈Π

1


∣∣∣{ρ ∈ Π : τ(Dρ) ≥ τ(Dσ)

}∣∣∣
T !

≤ α

 .
Now consider a ranking of all data sets Dσ for σ ∈ Π according to their CCEI, τ(Dσ),

from smallest to largest. Then, φα(Dσ) will be zero for the lowest values of the ranking

and will be equal to 1 from the (1− α)th quantile onward. As such, we have∑
σ∈Π

φα(Dσ) ≤ α (T !).

Combining all this, we obtain

EP (φα(D)) ≤ 1

T !
EP [(T !)α]

= α.
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A.3 Proof of Theorem 3

Let e ∈ [0, 1] and P̂T ∈ P̂eT,1. Let (Π, 2Π, Q) denote the uniform probability space on Π,

i.e. Q is the probability measure on (Π, 2Π) such that, for all S ⊆ Π,

Q(S) =
|S|
T !
.

Our aim is to construct an upper bound on EP̂T (1− φα(D)), i.e. the probability of not

rejecting the null hypothesis. Notice that, for a random data set D of size T ,

1 = P̂T

(
D ∈

(
ÊU,e

)T)
≤ P̂T (D satisfies e-GARP) ≤ P̂T (τ(D) ≥ e).

As such,

EP̂T (1− φα(D)) = EP̂T (1− φα(D)|τ(D) ≥ e)

≤ EP̂T

[
|σ ∈ Π : τ(Dσ) ≥ τ(D)|

|Π|
> α

∣∣∣∣τ(D) ≥ e

]
≤ EP̂T

[
|σ ∈ Π : τ(Dσ) ≥ e|

|Π|
> α

]
≤ EP̂T [EQ [1 (τ(Dσ) ≥ e)] ≥ α] .

Next, applying Markov’s inequality gives

EP̂T (1− φα(D)) ≤ 1

α
EP̂T

[
EQ [1 (τ(Dσ) ≥ e)]

]
=

1

α
EQ
[
EP̂T [1 (τ(Dσ) ≥ e)]

]
,

where the last equality follows from exchanging integration and summation.

We say that a permutation σ ∈ Π has n fixed points if there are exactly n integers

i ∈ {1, . . . , T} such that σ(i) = i. Let Πn be the set of permutations with n fixed points.

Then,
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EP̂T (1− φα(D)) ≤ 1

α
EQ
[
EP̂T [1 (τ(Dσ) ≥ e)]

]
=

1

α

T∑
n=0

Q(Πn)
∑
σ∈Πn

1

|Πn|
EP̂T [1 (τ(Dσ) ≥ e)]

≤ 1

α

T∑
n=0

Q(Πn)
∑
σ∈Πn

1

|Πn|
π
T−n

4
e (by Lemma 1)

≤ 1

α

T∑
n=0

1

n!
π
T−n

4
e (by Lemma 2)

≤ 1

α
π
T
4
e

∞∑
n=0

π
−n

4
e

n!

=
1

α
π
T
4
e exp

(
π
− 1

4
e

)
≤ 1

α
π
T
4
e exp

((
1

2

)− 1
4

)
≤ 4

α
π
T
4
e ,

which completes the proof.

A.4 Lemmata

Lemma 1. Let σ ∈ Π and P̂T ∈ P̂eT,1. Further, let D be a data set that is drawn

randomly from (Ω̂T , B̂T , P̂T ). Let n = |{i ≤ T : σ(i) = i}| be the number of fixed points

of σ. Then,

P̂T (τ(Dσ) ≥ e) ≤ π
T−n

4 ,

where π ≤ max(π̃e, πe).

Proof. Any permutation can be decomposed into an exhaustive set of disjoint cycles.

As there are T elements in total in the set {1, . . . , T}, the maximum length of a cycle

in σ is T . Also, the statement of the lemma implies n cycles of length 1. Let us denote

by Cm the number of cycles in the permutation σ of length m. Then, calculating the

elements by cycle gives

T =
T∑
k=1

kCk = n+
T∑
k=2

kCk. (3)
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Consider a cycle of length 2. As this cycle has no fixed points, it must take the form

D̃ =
(

(rσ(i), pi,mi), (ri, pσ(i),mσ(i))
)
,

for some i ≤ T . As observations are i.i.d., each such data subset D̃ generated from a

cycle of length 2 must be independent of all other observations in D.

Next, any cycle of length k ≥ 3 allows for constructing
⌊
k
3

⌋
non-overlapping data

sets of size 3 that take the form((
rσ(i), pi,mi

)
,
(
rσ(σ(i)), pσ(i),mσ(i)

)
,
(
rσ(σ(σ(i))), pσ(σ(i)),mσ(σ(i))

))
,

for some i ≤ T and bac denoting the greatest integer below a. Consider the data subsets

generated from these three element data sets by dropping the last observation,

D =

((
rσ(i), pi,mi

)
,
(
rσ(σ(i)), pσ(i),mσ(i)

))
.

All these data sets D are independent of all other data subsets that are constructed

from the same cycle (as they have no indices in common), and they are independent of

observations belonging to other cycles. The total number of both types of independent

data subsets of size 2 is then bounded from below by

C2 +
T∑
k=3

Ck

⌊k
3

⌋
≥ C2 +

T∑
k=3

Ck
k

4

≥ 1

4

T∑
k=2

k Ck

=
1

4
(T − n). (by equation (3))

The first inequality follows from the fact that, for k ≥ 3, bk/3c ≥ k/4. If τ(Dσ) ≥ e,

then all these independent data sets also have CCEI values (τ(D̃) and τ(D)) that exceed

e. As such, the probability that τ(Dσ) ≥ e is bounded from above by

P̂T (τ(Dσ) ≥ e) ≤
T−n

4∏
i=1

π = π
T−n

4 .

Lemma 2. We have

Q(Πn) ≤ 1

n!
. (4)
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Proof. A derangement is defined as a permutation with no fixed points. Let !n be the

number of derangements of {1, . . . , n}. It directly follows that !n/n! ≤ 1 and, thus,

Q(Πn) =

(
N
n

)(
!(N − n)

)
N !

=
!(N − n)

n!((N − n)!)
≤ 1

n!
.

Here, we counted the number of elements in Πn by first counting the possible ways to

pick n fixed points and then, for each set of fixed points, counting the possible ways in

which the remaining elements can be deranged.

B Algorithm to generate random data sets that sat-

isfy e-GARP

For an observation (qt, pt) we define the share vector

sti =
ptiq

t
i

mt
,

where mt represents the expenditure level at the observation, i.e. mt =
∑L

i=1 p
t
iq
t
i . As

there is a one-to-one correspondence between (qt, pt) and (st, pt,mt), we will interchange-

ably denote a data set D = (qt, pt)t≤T as D = (st, pt,mt)t≤T .

Our algorithm is a Markov-Chain-Monte-Carlo (MCMC) procedure that is based on

combining a Gibbs sampler with a hit-and-run step. Starting from a data set D that

satisfies e-GARP, at each iteration we pick one observation t ∈ {1, . . . , T} at random,

and we update the share vector st for observation t using a hit-and-run over the set of

all share vectors st that preserve e-GARP consistency.

More specifically, consider a data set D = (st, pt,mt)t≤T . We use the following

notation for the new data set that is obtained by replacing st in this original data set

by the vector s̃t:

(s̃t, s−t) = (s1, . . . , st−1, s̃t, st+1, . . . , sT ).

If D is consistent with e-GARP, we define

P(s−t) = {s̃t ∈ ∆L : (s̃t, s−t) satisfies e-GARP}.

The set P(s−t) contains all share vectors s̃t in the L-dimensional simplex ∆L such that

the data set obtained by replacing st by s̃t still satisfies e-GARP. It can be shown that

P(s−t) is a convex set.

Let us first describe our hit-and-run routine. We use ∂S to denote the set of all
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Algorithm 1 Sample δ uniformly from ∂S

Require: L
1: Draw L i.i.d. standard normally distributed variables x1, . . . , xL
2: Compute y = (y1, . . . yL) where yi ← xi −

∑L
i=1

xi
L

3: Compute δ = (δ1, . . . , δL) where δi ← yi
‖y‖

4: return δ

directions inside the L-dimensional simplex ∆L, i.e.

∂S =

{
δ ∈ RL : ‖δ‖ = 1 and

∑
i

δi = 0

}
.

The set ∂S contains all vectors whose elements sum to zero that are on the surface of

the L-dimensional unit sphere. Algorithm 1 shows how to draw an element δ uniformly

from ∂S.

For a given share vector s ∈ ∆L and direction δ ∈ ∂S, let

λ = sup
λ
{s+ λδ ∈ ∆L}.

This value λ can easily be determined. Observe that if st is a share vector and δ ∈ ∂S,

then we have
∑L

i=1(si + λδi) = 1 for any λ ∈ R. As such, for all goods i = 1, . . . , L, it

suffices to just consider those λ for which

0 ≤ si + λδi ≤ 1.

If δi > 0, this gives the bounds

λ ≤ 1− si
δi

,

and if δi < 0, we obtain the bounds

λ ≤ −si
δ
.

Since not all δi can be zero, we thus have

λ = min

{
min
i

{
1− si
δi

: δi > 0

}
,min

i

{
−si
δi

: δi > 0

}}
.
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Next, for a given data set D = (st, pt,mt)t≤T and direction δ, we define

λ̃t = sup{λ ≤ λt : (st + λδ, s−t) ∈ P(s−t).}

The value of λ̃t can be found through a binary search routine, as shown in Algorithm

2.

Algorithm 2 Compute λ̃t up to an error ε

Require: A data set D = (st, pt,mt)t≤T that satisfies e-GARP, an observation t ≤ T ,
a direction δ ∈ ∂S and an error term ε > 0

1: compute λt

2: a← λt

3: b← 0
4: while (a− b) ≥ ε do

5: c← (b+a)
2

6: if (st + cδ, s−t) satisfies e-GARP then
7: b← c
8: else
9: a← c

10: end if
11: end while
12: return λ̃t = c

Finally, Algorithm 3 provides the updating step of our MCMC procedure. To get

a new data set that satisfies e-GARP from a given set (st)t≤T that is consistent with

e-GARP (when fixing the prices and expenditure levels), we first draw a permutation

σ on {1, . . . , T} at random, and we use the hit-and-run step to sequentially update the

share vectors sσ(1), . . . , sσ(T ) to their new values. This is done by, first, drawing a random

direction δ uniformly from ∂S, next, computing the value of λ̃σ(t) and, finally, drawing

a value λ uniformly from (0, λ̃σ(t)). The new value of sσ(t) is set equal to sσ(t) + λδ. The

requirement that λ ∈ (0, λ̃σ(t)) together with convexity of the set P(s−t) guarantees that

every updated data set also satisfies e-GARP.

To intialize the MCMC procedure, we need a vector of shares (st)t≤T that is con-

sistent with e-GARP (for given prices and expenditure levels). To this end, we choose

expenditure shares such that a fraction 1/L of the total budget is spent on each good.

This corresponds to optimizing behavior for a Cobb-Douglas utility function that at-

taches equal weights to all goods, which guarantees consistency with e-GARP for any

e ∈ [0, 1].
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Algorithm 3 Generate M random data sets that satisfy e-GARP given an initial data
D = (st, pt,mt)t≤T that satisfies e-GARP

Require: A data set D = (st, pt,mt)t≤T that satisfies e-GARP
1: Initialize n← 0
2: while n ≤M do
3: Randomly pick a permutation σ : {1, . . . , T} → {1, . . . , T}
4: for t = 1 to T do
5: Draw a direction δ uniformly from ∂S using Algorithm 1
6: Compute λ̃σ(t) using Algorithm 2 for the observation σ(t) and the direction δ
7: Draw λ uniformly from (0, λ̃σ(t))
8: sσ(t) ← sσ(t) + λ δ
9: end for

10: n← n+ 1
11: end while
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