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Abstract

This paper introduces strategic behavior of the electricity network operator in
a congested network with imperfect competition for generation. It models a two
stage Stackelberg game. First, the network operator sets transmission prices, then
generators set output and sales. Several scenarios for the generation market structure
and the behavior of the network operator are compared numerically. The calibration
of the numerical model is based on data of the Belgian electricity market.

1 Introduction

This paper models how a network operator would set transmission tariffs under a number
of assumptions. We illustrate, with a numerical model that captures the major technical
features of the Belgian electricity system, how transmission prices are a function (1) of the
behavior of the network operator, (2) of the level of competition in generation, and (3) of
the availability of transmission capacity.

In contrast with most of the literature, the paper explicitly models the strategic be-
havior of the network operator. For expositional purposes, we present this behavior by
considering two stages.

In the first stage, the network operator maximizes his or her objective function by set-
ting transmission tariffs, while taking into account the subsequent actions of generators
and consumers. Two alternative objective functions are considered for the network oper-
ator: either he maximizes profit, or he maximizes welfare subject to a budget constraint.
These objective functions can be seen as two extreme cases, as, in practice, profit will be
maximized subject to some form of regulation constraint.

In the second stage, generators take transmission prices as given, while deciding about
the level of production in each of their generation plants and about the level of sales to
different consumers. The latter are assumed to be price takers. Three alternative scenarios
are developed for the generation market. The first scenario is the benchmark and assumes
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perfect competition in generation. In the second scenario, generation is a monopoly market.
As the Belgian electricity market is currently highly concentrated (the largest generator
has 83 % of the production capacity), this scenario could be considered as the current
situation. The third scenario considers three Cournot players in generation. This can be
interpreted as a market where some of the monopolist’s production capacity is virtually
auctioned, a mechanism that will shortly be implemented in Belgium.

As stated before, the model is illustrated with some numerical simulations. The model
that is used for this, is inspired by the Belgian electricity system in terms of the major
technical characteristics of both generation and transmission, and in terms of the demand
for electricity. The grid and generation characteristics will be described in more detail in
section 4.

The structure of the paper is as follows: the next section reviews some relevant and
related literature and the sections 3 and 4 describe the structure of the model and the
data, respectively. Section 5 discusses simulation results and, finally, section 6 presents
conclusions and some extensions for future research.

2 Survey of the literature

This section starts with a description of models of imperfect competition in electricity gen-
eration without transmission constraints, and continues with a discussion of some Cournot
models in which transmission constraints are present. The last part looks at the strategic
behavior of the network operator.

2.1 Imperfect competition in electricity markets

Due to the non storability of electricity and its highly variable demand, electricity systems
tend to feature a mix of base load plants and peak load plants. Peak load plants are
typically characterized by high marginal production costs and low investment costs, while
base load plants typically have low marginal costs and high investment costs. Peak load
plants are only used in periods of high demand, base load plants are used at all times. Peak
load power and base load power could therefore be considered as two different goods. To
model imperfect competition in such a multi-good market, two types of equilibrium have
been developed: the multi unit auction and the supply function equilibrium.

Multi-unit auction In the multi-unit auction, generators bid a price for each plant at
which they are willing to supply given capacities1. The equilibrium price, determined as
the price that clears the market, is applied to all inframarginal units2. In this setting,
bidders, offering more than one unit of capacity, have an incentive to increase their bids for
those plants that are likely to be marginal. Wolfram (1998) finds empirical evidence that,

1See for instance the models of Von der Fehr and Harbord (1993).
2Other types of auctions can also be considered.
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in the England & Wales market, large players effectively try to use their market power in
this way.

Multi-unit auctions are particulary hard to model, and do not always have a Nash
equilibrium.

Supply Function Equilibrium The supply function equilibrium concept is based on
Klemperer and Meyer (1989). Generators choose a continuous and differentiable supply
function, which, for each price, specifies the quantity they are willing to generate. Again,
the electricity price is established as the market clearing price. Klemperer and Meyer show
that an infinite number of Nash equilibria exist when electricity demand is known with
certainty. The reason is that only one point on the supply function is required to determine
the market clearing price, the remainder of the supply function can be chosen more or less
free.

However, if electricity demand is uncertain when generators decide about their supply
function, then the latter function has to be appropriate for several situations, and the
number of equilibria is reduced3. Klemperer and Meyer even show that, under certain
conditions, the differentiable supply function equilibrium becomes unique.

Green and Newbery (1992) apply the Klemperer and Meyer model to the two largest
generators in the English market4. By adding an output constraint for each generator, they
can further reduce the set of equilibria. Furthermore, Green and Newbery assume that
generators will coordinate on the equilibrium that maximizes total profit. Their model
predicts that, in the absence of a threat of entry, the two generators are able to sustain a
non-collusive equilibrium in which prices are well above operating costs.

One of the major drawbacks of the two types of models discussed above is that the
spatial structure of the electricity market, and therefore the impact of transmission con-
straints, is omitted. Neither of these two approaches is applicable (yet) in a market with
transmission constraints. Most researchers therefore opt for some kind of Cournot market,
while dropping some of the multi-good aspects of the actual market. In an empirical study,
Wolak and Patrick (2001) suggest that Cournot competition is an appropriate representa-
tion of the electricity generation market. They argue that the market power of dominant
generators is manifested through those generators declaring certain plants unavailable in
certain periods5.

2.2 Cournot in generation - Price taking in transmission

Even Cournot models become quite cumbersome when simulations are made for larger
networks with transmission constraints. This is the case because generators realize that,

3Klemperer and Meyer consider horizontal shifts in demand.
4Other studies using this model are Bolle (1992), Newbery (1998), Green (1996) and Rudkevich, Duck-

worth and Rosen (1998).
5Other studies using Cournot competition are Oren (1997) Stoft (1997), Borenstein, Bushnell and Stoft

(1998), Borenstein, Bushnell and Knittel (1999), Borenstein and Bushnell (1999), Hogan (1997), Cardell,
Hitt and Hogan (1997).

3



with scarce transmission capacity, transmission prices can be influenced, and congestion can
be created. Cournot-Nash equilibria are then no longer guaranteed to exist, and rationing
rules need to be added to the model. Therefore, this paper assumes that generators behave
à la Cournot in the energy market (buying and selling of electricity), but are price takers
in the transmission market. This approach is inspired by the model of Smeers and Wei
(1997, 1999).

Different assumptions can be made with respect to price setting in the transmission
market, for example congestion pricing (Smeers and Wei, 1997), regulated pricing (Smeers
and Wei, 1999), and strategic price setting (this paper). A short discussion follows.

Congestion pricing Smeers and Wei (1997) assume that the network operator sets
prices for using the network on the basis of congestion charges (CC). As long as a line is
not used at full capacity, the transmission tariff equals zero. If the line becomes congested,
the transmission tariff is increased until demand for transmission equals supply. This can
be illustrated for a network with one line of capacity k. With x the demand on the line,
and τ the transmission tariff, we have:

τCC(x) = 0 IF |x| < k (1a)

> 0 IF x = k (1b)

< 0 IF x = −k (1c)

Congestion pricing can be interpreted as the result of assuming that the network op-
erator behaves perfectly competitive. Thus, the network operator acts as a price taker in
the transmission market and appears to be unaware of his market power in that market.
Congestion charges can be implemented when the network operator is forced to sell all
transmission capacity in an auction, is not allowed to withhold capacity from the market,
and is not allowed to set a minimal reservation price for the transmission rights.

Regulated prices Wei and Smeers (1999) study regulated transmission prices. Here,
the transmission charge is the sum of two parts: a congestion charge τCC , and a regulated
charge τR 6:

τ(x) = τCC(x) + τR(x) (2)

The term τR(x) is set according to a regulatory rule which depends on the use of the
line. They study two types of regulatory rules: marginal cost pricing and average cost
pricing. The average cost rule sets the regulated charge for a transmission line equal to
the average cost of building a new transmission line. With the marginal cost rule, the
regulated charges are set according to the marginal cost of building transmission lines.

The congestion charge τCC(x) is required to clear the market when the demand for
transmission is in excess of available capacity at a transmission price equal to the regulated

6Wei and Smeers (1999) give a different interpretation to the congestion charges than we do here. They
look for a Generalized Nash Equilibrium where transmission constraints are internalized. In that case,
congestion charges are internal multipliers. See also the previous chapter, and the introduction.
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charge τR(x). Wei and Smeers assume that congestion charges are not used to refund the
network operator for building new transmission capacity7.

The Smeers and Wei model and the model in this paper are different because the first
model does not include Kirchhoff’s laws. On the other hand, Smeers and Wei also model
investment in new transmission capacity, something which is not included in this paper’s
model.

Prices chosen by the network operator In this paper, the network operator is no
longer assumed to behave as a passive player, but rather as a Stackelberg leader in a
two-stage game. In stage one, he maximizes his objective function by setting transmission
prices, while taking into account the effect of its pricing decision on the strategic behavior
of the players in the generation market. Transmission demand is thus assumed to be price
responsive. In the second stage, generators behave à la Cournot.

Two alternative and extreme assumptions with respect to the network operator’s ob-
jective function are discussed in the paper: profit maximization and welfare maximization
subject to a budget constraint. Network operation is commonly accepted to be a natural
monopoly, and, therefore, without regulation the network operator would simply maxi-
mize profit (Case 1). The second alternative assumption is that regulation is perfect, and
that the network operator maximizes welfare subject to a budget constraint (nonnegative
profit).

3 The model

Define the sets F and G as the sets of generation firms and generation plants. Let Gf be
the set of generation units owned by generation firm f ∈ F .With I being the set of network
nodes, Gi denotes the generation plants at node i ∈ I, and Gfi the generation plants at
node i owned by firm f . The network contains a number of nodes i ∈ I. Furthermore, let
A be the set of transmission lines in the network, with a (i, j) ∈ A the line connecting the
nodes i and j.

For notational simplicity, the model will be further described as if it concerned a one
period model, i.e. a model that does not distinguish between peak and off-peak periods.
However, the numerical simulations discussed in section 5 also cover a case that differen-
tiates between peak and off-peak demand in a 4-period model.

The model distinguishes three types of players: consumers, generation firms and the
network operator.

Consumers are price takers. At node i, they consume si units of electricity. Their in-
verse demand for electricity, denoted as pi (si), is downward sloping and concave. Consumer
prices include compensation for both the generation and the transmission of electricity.

Generation firm f ∈ F maximizes profits, while acting as a price taker in transmission.
At node i, it owns the generation plants g ∈ Gfi.

7It has often been argued that congestion payments should not go to the network operator as this could
give the wrong incentives.
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Electricity generation in plant g is qg and the generation cost is Cg(qg). Total generation
costs are convex, with fixed generation costs normalized to zero. The generation capacity
of plant g is labelled q̄g. Output should be nonnegative, and cannot exceed available
generation capacity. Therefore, we have

0 ≤ qg ≤ q̄g

The network operator or transmission company either maximizes profit or social welfare,
depending on the assumptions taken later on. The transmission company sets a nodal
transmission charge τ c

i for consumers and τ g
i for generators. This is the per unit payment

generators have to make for injecting power, and that consumers have to pay to take power
from the grid. These charges can be different. For instance, a generator who generates
electricity in node i and sell electricity in node j will pay τ g

i + τ c
j . Only the sum of the

consumer and generation transmission charge is important, and therefore one of the charges
can be set equal to zero without loss of generality.

As explained before, the model has two stages. In the first stage, the transmission
operator sets transmission prices. In the second stage, generation firms play a Cournot
game in which transmission prices and their competitor’s quantities are assumed as given.
The next subsection describes the second stage of the game.

3.1 The second stage

Each firm f observes the transmission charges τ p
i and τ c

i as set by the network operator
and plays a Cournot game. A firm f collects revenue by selling sfi units of electricity at
node i at the per unit price pi. Firms also set the production level qg (g ∈ Gf ) at each
of their plants Their competitor’s sales in node i, denoted by s̃−fi, are taken as given.
Apart from generation costs, firms also pay a transmission cost τ p

i for injecting electricity
to the network at node i, and τ c

i for the delivery of electricity to node i. This results in
the following profit function for generation firm f ,

ΠGen
f =

∑
i∈I

(pi − τ c
i ) · sfi −

∑
i∈I

∑
g∈Gfi

[Cg (qg) + τ p
i qg] (3)

The nodal price pi that is received by generator f depends on the total sales in that node,
i.e.

pi = pi (si)

si = sfi + s̃−fi

where a tilde indicates that the variable is considered as given. In equation 3, the first term
reflects revenues from electricity sales net of transmission charges paid at the consumption
nodes. The second term reflects generation costs and transmission charges to put the
electricity on the network. Summarizing, we have the following maximization problem for
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a generator:

max
sfi,qg(g∈Gf )

ΠGen
f =

∑
i∈I

(pi(si) − τ c
i ) · sfi −

∑
i∈I

∑
g∈Gfi

[Cg (qg) + τ p
i qg]

Subject to:

0 ≤ qg ≤ q̄g

(
µ

g
, µg

)
∀g ∈ Gf∑

i∈I

sfi =
∑
g∈Gf

qg

(
λp

f

)
(4)

si = sfi + s̃−fi ∀i ∈ I

As noted before, the first constraint reflects generation capacity constraints. The second
constraint represents the energy balance at the firm level, i.e. total output should equal
total sales. The last constraint represents demand. This constraint has no multiplier as it
is substituted into the objective function and the other constraints before derivatives are
taken.

The following first order conditions are then derived:

∂Cg(qg)

∂qg

+ τ p
i + µ

g
− µg = λp

f ∀g ∈ Gfi,∀i ∈ I (5)

pi +
∂pi(si)

∂si

sfi − τ c
i = λp

f ∀i ∈ I (6)

These are the standard first-order conditions for profit maximization, i.e. as long as gen-
eration constraints are not binding, marginal revenue equals marginal cost in all market
segments. The Lagrange multiplier of the energy balance constraint λp

f , is the value of
energy in the network for generation firm f . This value is different for every firm.

Cost minimization requires that each firm equalizes the sum of the marginal cost and
the generation charge at all generation plants. Profit maximization requires that marginal
revenues net of consumption charges are equalized.

Each firm‘s reaction function with respect to the sales s−fi and the transmission charges,
τ c
i and τ g

i can be derived from the equations 4, 5 and 6.
In the remainder of this paper, we assume that the generation constraints are not

binding (µ
g

= µg = 0 ). Without this assumption, the network operator’s problem becomes

intractable. The firms will thus not choose corner solutions. This is the case when (1) the
marginal costs are zero for zero output

lim
qg→0

∂Cg(qg = 0)

∂qg

= 0

and (2) sufficiently large at full output

lim
qg→q̄g

∂Cg(qg)

∂qg

= ∞
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Electricity transmission The model should allow simulating of the effects of structural
and regulatory changes in the electricity sector. Therefore, the technical features of the
electricity system, especially at the level of electricity transport, should also be captured
by the model. Electricity transport is subject to physical constraints. These constraints
have an impact on the power flow through the network and therefore potentially also on
the pricing of transmission services. In this paper we concentrate on active power and we
adopt a simplified DC flow model without losses.8

Each line in the network is characterized by a transmission capacity and its admittance.
For example, the line a (i, j) connecting the nodes i and j has a capacity Q̄a(i,j) and an
inductance Ya(i,j)

9. Denoting the flow over the line a as Qa, we must have

Qa ≤ Q̄a ∀a ∈ A (7)

Transmission must be smaller than the available transmission capacity. This is also
called the thermal constraint of line a, because the line’s temperature increases too much
if the line carries larger flows.

The flow over a line a (i, j) is proportional to the difference of the phase angles in the
begin and end point, i.e.

Qa(i,j) = Ya(i,j) (δi − δj) ∀a (i, j) ∈ A (8)

As there is one degree of freedom in choosing phase angles, one phase angle, located at
the so-called swing node, is set equal to zero.

δi = 0, i = swing node (9)

The physical properties of the network can be summarized by a set of nodal equations,
and a set of line equations. In each node, the flows entering and leaving the node should
balance, i.e.

qi − si =
∑
j∈I

Qa(i,j) ∀i ∈ I (10)

with si, qi the total consumption and generation in node i:

si =
∑
f∈F

sfi ∀i ∈ I (11)

qi =
∑
g∈Gi

qg ∀i ∈ I (12)

The left hand side of 10 is the surplus of local production in node i (=production −
consumption in node i). The right hand side is the sum of the flows leaving node i.

Equations 7 - 9 describe the transmission possibilities of the network, i.e. they define
the production feasibility set of the network operator.

8Such a model assumes that line resistance is small relative to reactance, that voltage magnitudes are
the same at all nodes, and that voltage angles between nodes at opposite ends of a transmission line are
small. Engineers often use the linearized model of the network for long term planning.

The alternative, AC-power flow, was used in a previous version of the program, but did not give funda-
mentally different results.

9The shorthand a will be used to indicate a line a (i, j) if this can be done without creating confusion.
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Security of supply The network operator also needs to secure the supply of electricity.
A minimal requirement for this is that, if unexpectedly a line goes out of service the
remaining lines should still be able to transport all supplied electricity. This is the so-
called n − 1 rule, i.e. if a line α ∈ A breaks down, the set of the remaining lines A/{α}
should be able to transport the power over the network. After a contingency, the flows
redistribute themselves over the network, and these new flows should still be feasible given
the thermal constrains of the networks. Clearly, taking into account the n− 1 rule has an
impact on the constraints 7, 8, 11 and 12. These equations become

qi − si =
∑

a(i,j)∈A\{α}
Qα

a(i,j) ∀i ∈ I (13)

Qα
a(i,j) = Ya(i,j)

(
δα
i − δα

j

) ∀α ∈ A,∀a ∈ A\{α} (14)

δα
i = 0, i = swing node, ∀α ∈ A (15)

Qα
a ≤ Q̄a ∀a ∈ A\{α} (16)

The variable Qα
a denotes the flow on line a when line α fails. Each of these constraints

must be satisfied for each potential line breakdown. The equations 7 to 16 form the network
equations of the model.

3.2 The first stage

The network operator is either a profit-maximizing firm or a welfare maximizing firm,
subject to a budget constraint. The objective is maximized by setting consumption and
generation transmission charges (τ c

i and τ p
i ), which can be differentiated over the nodes.

It is assumed that the cost of providing transmission services is separable into operating
costs and capacity costs. In the present model, operating costs and network losses are
neglected. Therefore, only the capacity costs B remain.

The profit of the network operator is then equal to:

Πtr =
∑
i∈I

(τ c
i si + τ p

i qi) − B (17)

The first term between brackets is the revenue of selling transmission services to consumers
at node i. The second term is the revenue of selling transmission to the generators. The
last term represents capacity costs. By assumption, capacity costs are fixed.

Profit maximization With profit maximization, the network operator maximizes prof-
its Πtr subject to

the energy balance at the firm level,∑
i∈I

sfi =
∑
g∈Gf

qg ∀f ∈ F\{f1} (18)
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the Cournot behavior (Sales - Production)

pi(si) +
∂pi(si)

∂si

sfi − τ c
i = λp

f ∀i ∈ I,∀f ∈ F (19)

∂Cg(qg)

∂qg

+ τ p
i = λp

f ∀i ∈ I,∀f ∈ F,∀g ∈ Gfi (20)

and the ten network equations 7 - 16:

qi − si =
∑
j∈I

Qa(i,j) ∀i ∈ I (21)

Qa ≤ Q̄a

(
γtr

t

) ∀a ∈ A (22)

Qa(i,j) = Ya(i,j) (δi − δj) ∀a ∈ A (23)

δi = 0, i = swing node (24)

si =
∑
f∈F

sfi ∀i ∈ I (25)

qi =
∑
g∈Gi

qg ∀i ∈ I (26)

τ c
i = 0 i = swing node (27)

qi − si =
∑

a(i,j)∈A\{α}
Qα

a ∀α ∈ A,∀i ∈ I (28)

Qα
a(i,j) = Ya(i,j)

(
δα
i − δα

j

) ∀α ∈ A,∀a ∈ A\{α} (29)

δα
i = 0, i = swing node, ∀α ∈ A (30)

Qα
a ≤ Q̄a ∀α ∈ A,∀a ∈ A\{α} (31)

Note that the set of network equations implies global energy balance, i.e. total produc-
tion is equal to total consumption. Therefore one of the energy balances of the generators
can be dropped from the optimization problem.

The two constraints that describe the Cournot behavior of the generator define a non-
convex constraint. Therefore the problem does not need to have a unique local optimum.

Welfare maximization Under welfare maximization the network operator maximizes

W=
∑
i∈I

si∫
0

pi (t) dt −
∑
g∈G

Cg (qg) (32)

subject to the network constraints 7 - 16, the Cournot behavior of the generators (18 -
20) and the budget constraint:∑

i∈I

(τ c
i si + τ p

i qi) − B = Πtr≥ 0 (33)

This latter constraint is added in order to avoid that the network operator goes bankrupt.
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4 Data and calibration

Before continuing with the simulations, we discuss the data that have been used as an input
for the model. Also, the calibration procedure will be described. The choice of the technical
features of the transmission grid and of the available generation plants is inspired by the
Belgian electricity system. This is, however, not the case for the regulatory framework.
Here, we make two extreme assumptions, i.e. perfect regulation versus no regulation.

4.1 The Network

Figure 1 shows the network that has been used. It consists of 55 nodes and 92 lines and
includes all the Belgian 380 kV and 220 kV transmission lines, but also some 380 kV lines
in The Netherlands and France because they are important for the flows inside the Belgian
network. The full lines on the graph are 380 kV lines, the dotted lines are 220 kV lines.
The line between Gouy and Avelgem represents several lines of the 110 kV network that
connect both nodes.10

The data of the lines are given in the Table 1. It gives, for each line, information on
origin and destination, voltage level, admittance, thermal capacity, and whether the line
is used in the contingency analysis.

Some of the columns require more explanation. The admittance of each line is normal-
ized on the basis of the reference voltage level of the lines (V ref = 380, 220 or 110 kV )
and the reference power level (Sref = 1MW ). The normalized admittance is equal to

Ya =
(V ref

a )2

Sref
√

X2
a + R2

a

(34)

with Xa [Ohm] and Ra[Ohm] the resistance and the reactance of the lines.
The last column of Table 1 indicates whether the line is checked for the n − 1 security

constraint. For a line indicated with Y (=Yes) we make sure that when it breaks down
that the remaining (92-1) lines can transport the electricity. The n − 1 rule is checked for
all Belgian 380 kV lines, except for some loose ends. Line 34 (Drogenbos - Mekingen) is
such a loose end, i.e. Drogenbos can only be supplied via the line from Mekingen. Using
the n − 1 rule for this line makes no sense when we do not include lower voltage levels.

The n − 1 rule is not imposed for the interconnections with France and The Nether-
lands and for the lines within these countries, because sufficient or adequate information
is lacking.

10Network data was kindly provided by Peter Van Roy and Konrad Purchala of the Department of
Electrical Engineering.
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Figure 1: The Belgian high voltage network, situation in 2002.
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V Y N-1

(kV) (p.u.) (MW) (Yes)

1 Achene Gramme 380 13165 1316 Y

2 Achene Lonny 380 8071 1179

3 Aubange Brume 380 5094 790 Y

4 Avelgem Avelin (FR) 380 11321 1179 Y

5 Avelgem Izegem 380 21310 1420 Y

6 Avelgem Izegem 380 21310 1420

7 Avelgem Rodenhuize 380 9026 1420 Y

8 Avelgem Zomergem 380 12234 1350 Y

9 Borssele (NL) Zandvliet 380 10931 1650

10 Bruegel Buggenhout 380 30545 1420 Y

11 Bruegel Buggenhout 380 31090 1350 Y

12 Bruegel Courcelles 2 380 10268 1420 Y

13 Bruegel Mekingen 380 34468 1350 Y

14 Brume Coo 380 242820 1350 Y

15 Brume Coo 380 242820 1350 Y

16 Brume Gramme 380 10963 1420 Y

17 Brume Gramme 380 10963 1350 Y

18 Buggenhout Mercator 380 31332 1420 Y

19 Buggenhout Mercator 380 31780 1350 Y

20 Buggenhout Verbrande Brug 380 22372 1420 Y

21 Buggenhout Verbrande Brug 380 22372 1420 Y

22 Champion Cognelee 380 134987 1420

23 Cognelee Courcelles 2 380 11991 1420 Y

24 Cognelee Gramme 380 16982 1420 Y

25 Courcelles 1 Gouy 380 284443 1350 Y

26 Courcelles 1 Mekingen 380 14534 1350 Y

27 Courcelles 1 StAmand 380 38569 1350 Y

28 Courcelles 2 Gouy 380 269973 1420 Y

29 Doel 1 Mercator 380 23241 1420 Y

30 Doel 1 Mercator 380 21295 1350 Y

31 Doel 2 Mercator 380 21295 1350 Y

32 Doel 2 Zandvliet 380 66471 1420 Y

33 Doel 2 Zomergem 380 7048 1350 Y

34 Drogenbos Mekingen 380 47128 1420

35 Eeklo Noord Zomergem 380 40429 1420

36 Geert Zandvliet 380 8596 1650

37 Gramme Herderen 380 11391 1350 Y

38 Gramme Rimiere 380 33255 1350 Y

39 Gramme Saint Amand 380 8610 1350 Y

40 Gramme Tihange 380 147492 1420 Y

41 Gramme Tihange 380 186733 1420 Y

42 Gramme Tihange 380 167687 1350 Y

43 Gramme Tihange 380 167687 1350 Y

44 Herderen Lixhe 380 47621 1420 Y

45 Herderen Maasbracht (NL) 380 9138 1350

46 Lint Massenhoven 380 34441 1420 Y

47 Lint Mercator 380 23019 1420 Y

48 Lint Mercator 380 23019 1420 Y

49 Maasbracht (NL) Meerhout 380 6998 1420

50 Massenhoven Meerhout 380 14942 1420 Y

51 Massenhoven Mercator 380 13797 1420 Y

52 Mercator Rodenhuize 380 14204 1350 Y

53 Saint Amand Tergnee 380 64753 1420

# line FROM TO

( , )i j
Q

Table 1: Lines used in the numerical model.
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V Y N-1

(kV) (p.u.) (MW) (Yes)

54 Aubange Belval 220 8601 400

55 Aubange Heinsch 220 11686 240

56 Aubange Latour 220 8534 345

57 Aubange Moula 220 8839 400

58 Aubange StMard 220 6269 345

59 Aubange Villeroux 220 3644 240

60 Awirs Le Val 220 20157 410

61 Awirs Rimiere 220 18398 375

62 Brume Montlez Houffalize 220 6462 510

63 Harnoncourt Saint Mard 220 188066 345

64 Heinsch Villeroux 220 5339 240

65 Jupille Lixhe 220 14885 541

66 Jupille Rimiere 220 5963 410

67 Jupille Romsee 220 23987 300

68 Latour Sint Mard 220 23716 345

69 La Troque Seraing 220 53081 400

70 La Troque Seraing 220 53081 400

71 Le Val Rimiere 220 10012 375

72 Le Val Seraing 220 45360 400

73 Marcourt Rimiere 220 4567 405

74 Marcourt Villeroux 220 5887 405

75 Montlez Houffalize Villeroux 220 6994 510

76 Rimiere Seraing 220 11467 400

77 Romsee Seraing 220 9138 400

78 Borssele (NL) Geertruidenberg (NL) 380 17168 946

79 Eindhoven (NL) Geertruidenberg (NL) 380 8237 1892

80 Eindhoven (NL) Geertruidenberg (NL) 380 8237 1892

81 Eindhoven (NL) Geertruidenberg (NL) 380 8237 1892

82 Eindhoven (NL) Maasbracht (NL) 380 11885 1892

83 Eindhoven (NL) Maasbracht (NL) 380 11885 1892

84 Lonny (FR) Mastaing (FR) 380 4236 1715

85 Lonny (FR) Moulaine (FR) 380 5267 2577

86 Lonny (FR) Moulaine (FR) 380 5267 2577

87 Avelin (FR) Lonny (FR) 380 3877 2570

88 Avelin (FR) Lonny (FR) 380 3877 2570

89 Avelin (FR) Mastaing (FR) 380 15701 1715

90 Avelin (FR) Mastaing (FR) 380 4297 496

91 Avelin (FR) Mastaing (FR) 380 2589 11499

92 Avelgem Gouy 150 1453 400

# line FROM TO

( , )i j
Q

Table 1: (Continued) Lines used in the numerical model.
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4.2 Electricity generation

Table 2 summarizes relevant data on the 51 generation units located in the grid. Total
available generation capacity equals 13 405 MW. The data are based upon the year 2002.11

The first column gives the node at which the generation unit is attached, the second
the name of the plant, and the third the fuel type of the plant. The columns four and
five give the marginal cost parameter Cg (defined below) and the maximal capacity of the
plants q̄g.

In the simulations, three alternative scenarios are considered w.r.t. the functioning
of the generation market. First, we assume a generation monopoly, i.e. all generation
units are owned by one profit maximizing generator. The second scenario considers three
profit maximizing generators, having an approximate market share in generation capacity
of 43%, 34% and 23%, respectively. The last column in Table 3 provides information
on the assumed generation ownership structure in this case. Finally, the third scenario
assumes perfect competition in generation.

Approximately 1070 MW of smaller generation plants are not included in the model.
These are mainly combined heat and power generation units (970 MW), and some small
hydro units (90 MW). We assume that in any time period, 50 % of these plants produce
electricity.

Each player maximizes profit, taking into account plant characteristics. Generation
decisions are described by the first order conditions 5. The player’s generation decisions
are highly non-linear at the zero production level and at the maximal capacity of each
plant. Therefore, the model in this paper is a Mathematical Program with Equilibrium
Constraints. (MPEC’s) MPECs are a class of problems which are known to be difficult to
solve. (Luo, Pang, Ralph, 1996). This paper uses a pragmatic approach to solve them and
smoothes the marginal cost function of the generators.

In the model, marginal costs are defined as

∂Cp
g (qg)

∂qg

= Cg ·
[
1 − αg

(
βg +

qg

q̄g

)−φg

+ αg

(
βg +

q̄g − qg

q̄g

)−φg
]

(35)

with q̄g denoting the production capacity of production plant g, and Cg is the marginal cost
of generation when 50% of the generation capacity of plant g is used. The parameters αg, φg,
βg are chosen such that generators always choose an internal solution. All this will be at
the cost of accuracy concerning the exact value of the marginal cost, but the numerical
problem becomes much easier to solve and we will be more sure to find a solution close to
the global optimum.

The total generation cost is the integral of the marginal cost function, i.e.

Cg(qg) =

∫ qg

o

∂Cg(t)

∂qg

dt (36)

11Some of the data was kindly provided by Leonardo Meeus and Kris Voorspools of the Departments
of Electrical and Mechanical Engineering, respectively. Data was also taken from several editions of the
BFE statistical yearbook, the annual report of Electabel.

15



(€ MWh-1) (MW)

1 Avelgem Ruien 3 Conv. Coal 20 152 3

2 Avelgem Ruien 4 Conv. Coal 20 158 3

3 Avelgem Ruien 6 Conv. Coal 20 236 3

4 Avelgem Ruien 5 Conv. Coal + repower. 19 238 3

5 Avelgem Ruien 7 Conv. Coal + repower. 19 95 3

6 Awirs Awirs 4 Conv. Coal 20 124 3

7 Bruegel Deux-Acren Turbojets 59 18 3

8 Coo Coo I Pumped Storage 13 474 2

9 Coo Coo II Pumped Storage 13 690 2

10 Coo Cierreux Turbojets 59 17 3

11 Doel 1 Doel 2 Nuclear 10 393 1

12 Doel 1 Doel 4 Nuclear 10 985 1

13 Doel 2 Doel 1 Nuclear 10 393 1

14 Doel 2 Doel 3 Nuclear 10 1006 1

15 Drogenbos Drogenbos STAG 18 460 2

16 Drogenbos Drogenbos Gas Turbine 45 78 3

17 Drogenbos Ixelles Turbojets 59 18 3

18 Eeklo Noord Brugge Herdersbrug STAG 18 460 2

19 Eeklo Noord Zedelgem Turbojets 59 18 3

20 Eeklo Noord Zeebrugge Turbojets 59 18 3

21 EekloNoord Aalter Turbojets 59 18 3

22 Gouy Saint-Ghislain STAG 18 350 2

23 Gouy Amercoeur 2 Conv. Coal 20 127 3

24 Gouy Monceau Conv. Coal 20 92 3

25 Gouy Plate tail Pumped Storage 13 143 2

26 Herderen Langerlo 1 Conv. Coal + repower. 19 301 2

27 Herderen Langerlo 2 Conv. Coal + repower. 19 301 2

28 Izegem Harelbeke Diesel Motor 58 77 3

29 Izegem Noorschote Turbojets 59 18 3

30 Jupille Monsin Gas Turbine 45 70 3

31 LaTroque Angleur 1 en 3 (Socolie) STAG 18 121 2

32 LeVal Seraing STAG 18 460 2

33 Massenhoven Beerse Turbojets 59 32 3

34 Meerhout Mol 11 Conv. Coal 20 124 3

35 Meerhout Mol 12 Conv. Coal 20 131 3

36 Meerhout Mol Gas Turbine 45 30 3

37 Mercator Kallo 1 Conv. Gas 21 261 3

38 Mercator Kallo 2 Conv. Gas 21 261 3

39 Rodenhuize Gent (Ham) STAG 18 53 2

40 Rodenhuize Gent (Ringvaart) STAG 18 385 2

41 Rodenhuize Rodenhuize 2 Conv. Fuel 40 129 3

42 Rodenhuize Rodenhuize 3 Conv. Fuel 40 128 3

43 Rodenhuize Rodenhuize 4 Conv. Coal 20 269 3

44 Rodenhuize Gent (Ham) Diesel Motor 58 71 3

45 Rodenhuize Zelzate Turbojets 59 18 3

46 Romsee Turon Turbojets 59 17 3

47 Tihange Tihange 1 nuclear 10 962 1

48 Tihange Tihange 2 nuclear 10 1008 1

49 Tihange Tihange 3 nuclear 10 1015 1

50 Verbrande Brug Vilvoorde STAG 18 385 2

51 Verbrande Brug Schaerbeek Turbojets 59 18 3

   f  # gen Node Name Plant Fuel Type
gC

gq

Table 2: Generation units
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Figure 2: Aggregate supply function excluding pumped storage.

Plant numbers 8, 9 and 24 are pumped storage plants, i.e. they can store energy in the
form of a water reservoir. When generation costs are low, these plants consume electricity
and pump water to a higher level. When generation costs are high, the reservoir is emptied
and electricity is produced. The underlying decision process is not modelled in this paper.
We assume that these plants generate electricity during peak periods at a marginal cost
of 7e per MWh, and we count them as part of the consumption side during the off-peak
periods.12

Figures 2 and 3 show the aggregate supply function of the generation plants with and
without the storage plants included. The stepped function is the real supply function,
while the more or less fluent line is the approximated supply function. The approximation
is reasonably close to the real supply function, for values of demand above 6 GW .

12A better modelling of the pumped storage plants would require to take into account the capacity con-
straint of the water reservoir, and to make the decisions of whether to consume or to generate endogenous.
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Figure 3: Aggregate supply function including pumped storage.
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Demand Characteristics Belgium, 15' level (2002)
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Figure 4: Histogram of electricity demand in Belgium in 2002. (Source ELIA)

4.3 Electricity demand

The model has been calibrated on the basis of Belgian data for electricity demand in 200213.
In that year the average demand was 9.52 GW. Total yearly demand in Belgium is 83.4
TWh per Year. Figure 4 presents a histogram of demand in Belgium. The histogram
is based on periodical observations with a length of 15 minutes. The highest and lowest
observed demand levels were 13.7 GW and 5.8 GW, respectively.

Extending the model from one period to multi periods Obviously, the demand for
electricity is not constant over time and in order to take this into account, the numerical
one-period model has been extended to a 4-period model. For this, the model needs to be
slightly extended, as one time period might have an effect on other time periods. In the
present model, we distinguish three potential links.

First, cross-substitution can take place between time periods. For example, demand
for electricity during the night will not only depend on the price in the night, but also
on the price that is charged during the day. In this model it is assumed that these cross-
substitution effects are zero. There is thus no intertemporal substitution.

Second, as was mentioned before, the consumption and generation decision of the
pumped storage plants can be endogenized. And finally, when the transmission firm is
maximizing welfare subject to a budget constraint, then this budget constraint creates a

13The network of one part of Luxembourg forms an integral part of the Belgian network. Demand levels
for that part are included in the model here.
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Period Demand 

Observed

Period 

Length

Demand 

Model

Reference 

Price

(GW) (GW) [€/MWh]

1 12.5 2.4% 12.0 45.2

2 11.5 20.1% 11.0 37.9

3 10.0 38.9% 9.5 35.6

4 8.0 38.6% 7.5 27.0

Table 3: Calibration of the 4 time periods

link between the different time periods. The marginal welfare cost of obtaining revenue for
the network operator should now be equal over each time period.

Note that, if the network operator maximizes profit, then there is no (binding) bud-
get constraint and the different time periods can be considered independently given the
assumptions with respect to the two potential links discussed above.

4.4 Network operator

The network operator has total costs of B =649 Me per year (Source: Annual report ELIA,
2002). Capital costs are about 50% of the total costs, the other 50% being operating costs,
such as wages and network maintenance costs. Wages and network maintenance costs are
not directly related to the amount of MW transported over a line, they are inherent to
the existence of that line. Therefore, as we could not find a more detailed description of
the cost function of the network operator, we assume all costs to be fixed. Network losses
are neglected in the model. Clearly, these would depend on the actual use of the network.
With a total electricity demand of 83.4 TWh per year, the average cost of the network
operator is 7.78e per MWh.

4.5 Calibration

The calibration of the model involves three steps. Each of these three steps is described
below.

Fixing periodic aggregate demand and the length of each period. The first step
is to decide about the level of electricity demand in each of the four periods, and about
the length of each period in a standard year. This has been done on the basis of the
data presented in Figure 4. This figure shows how often a certain demand level occurs in
the Belgian market. We will consider 4 periods with average demand levels fixed at 8, 10,
11.5 and 12.5 GW . The length of each time period is then set such that the cumulative
distribution function of the 4 periods approximates the observed cumulative distribution
function (Table 3). As 500 MW of this demand is provided by small generators, the demand
level as seen by the generators in our model is fixed 500 MW lower. Thus, the demand
levels used to calibrate the demand functions are 7.5, 9.5, 11 and 12 GW .
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Fixing a reference price for each period. Given the periodic electricity demand,
derived in the first step, we minimize the production costs to supply this demand. Here,
it is assumed that pumped water storage can only be used in period one and two. In the
periods three and four, pumped storage plants pump water into a water reservoir.

Via this procedure, we obtain the marginal production cost for each period. The
obtained values are increased with the average costs of the network operator ( 7.78e per
MWh) to obtain a reference price for each period (Table 3).

Fixing periodic electricity demand in the consumption nodes In the third step,
we derive for each node a linear demand function. The price elasticity of demand is assumed
to be −0.5 in all nodes and all periods. Total demand is distributed proportionally over the
different periods on the basis of the data in Table 4 and the reference prices calculated in
step 214. This information is sufficient to derive for each consumption node the parameters
of the linear demand function.

4.6 Transit

It was already mentioned that the technical features and the dimension of the grid are
inspired by the Belgian electricity market. Also, the generation and demand characteristics
are based on data for Belgium. Therefore, we also take into account in our model that
the Belgian grid is used for relatively large transit flows. These flows are generally directed
from France to The Netherlands and, as a first approximation, we impose an exogenous
transit flow of 1000 MW from the south to the north. This transit is assumed to occur in
all periods. The foreign generation and load nodes are summarized in Table 5.

Import from France to Belgium is neglected. Without modelling the French genera-
tor(s), import cannot be included in our model in a sound way. Import is about 400 MW .

Clearly, this is only an approximation. A more detailed and better modelling procedure
should be the subject of further research.

5 Simulation results

This section discusses some simulation results obtained with the model. However, before
starting the discussion, we first try to grasp some intuition on the setting of and relation
between the transmission charges for consumers and generators. Then, in subsection 2, we
discuss the simulation results obtained in a one period model, under the assumption that

• demand is low;

• the transmission firm maximizes welfare (with budget constraint (second best) and
without (first best) );

14Data is based on Van Roy (2001).
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# Cons Node MWh

1 Gouy 780

2 Lint 746

3 Verbrande Brug 690

4 Bruegel 661

5 Zandvliet 618

6 Gramme 579

7 Izegem 526

8 Meerhout 508

9 Tergnee 471

10 Massenhoven 432

11 Seraing 378

12 Lixhe 350

13 Belval 341

14 Mercator 329

15 Achene 286

16 Awirs 281

17 Champion 254

18 Rimiere 229

19 Aubange 226

20 Jupille 223

21 Romsee 165

22 La Troque 125

23 Rodenhuize 123

24 Avelgem 116

25 Villeroux 95

26 Montlez Houffalize 94

27 Drogenbos 84

28 Marcourt 83

29 Heinsch 60

30 Harnoncourt 57

31 Eeklo Noord 34

32 Brume 25

33 Saint Mard 14

34 Latour 14

Table 4: Distribution of demand over the different nodes when total demand is 10 000 MW

The Netherlands

Node [MW]

Maasbracht (NL) -731

Geertruidenberg (NL) -368

Borssele (NL) 99

TOTAL -1000

France

Node [MW]

Aveli (FR) 543

Lonny (FR) 34

Moulaine (FR) 423

TOTAL 1000

Table 5: Exogenous generation levels at the foreign nodes. Negative numbers are loads.

22



• the generation market is perfectly competitive;

• security constraints are neglected.

Subsection 3 then discusses simulation results obtained under the same assumptions
except that now a high demand is assumed. Subsection 4 discusses the same scenario’s as
in subsection 3, but now the n − 1 rule is imposed as a security of supply constraint.

Finally, subsection 5 introduces the multi-period approach, considers alternative objec-
tive functions for the transmission company and alternative market structures for electricity
generation. The impact of these alternatives on the market outcome will be discussed.

One final remark has to be made. The simulations presented in this paper serve the
purpose of illustrating the possibilities of the model. The current simulation results do
not pretend to give a fully realistic view of what would be the outcome for the Belgian
electricity market if the liberalization process is finalized. But we do feel that the model
has the potential to provide insight in the consequences of such structural and regulatory
changes. However, this would require a more detailed modelling, especially of the regulatory
settings.

5.1 Interpreting transmission prices

In the current model, we assume that the network operator is able to set a transmission
price for generation and consumption in each node: τ p

i and τ c
i . Within the set of linear

price structures, this is the most general assumption. It encompasses a number of ’price
structure’ options as special cases. For example, only charging consumption, only charging
generation, a separate but uniform tariff for generation and consumption and, one uniform
tariff for both generation and consumption as the most extreme case. In the simulations
presented in this paper, we stick to the most general case which means that the network
operator has the freedom to set differentiated charges for generation and consumption.

However, the optimal transmission charges are not uniquely defined. First, take a node
i at which no consumers are connected. For that node, the consumer transmission price
τ c
i does not play a role and it can safely be set equal to zero. The same is true for nodes

without generation. Here, τ p
i is not uniquely defined and the charge is set equal to zero.

Second, note that a firm generating electricity in node i, that is sold in node j, has to
pay a per unit transmission charge equal to

τij = τ p
i + τ c

j

For the generation firm, only the total transmission charge is important, not its exact
composition. The network operator has therefore one degree of freedom in setting the
transmission charge components. This can easily be checked from the equations 19 and 20,
and by noting that one can uniformly increase all generation tariffs with t and decrease all
consumer tariffs with t without changing the sum of the charges. Indeed, the new tariffs
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τ c∗
i and τ p∗

i will equal

τ c∗
i = τ c

i − t

τ p∗
i = τ p

i + t

but the total charge for transmission between any two nodes i, and j remains the same,
i.e. τij = τ ∗

ij. We can therefore arbitrarily fix the consumers’ transmission price in one
node equal to zero. This is done for the consumption charge in the swing node:

τ c
i = 0 i = swing node

Finally, note that the model implicitly assumes that the charges need to be paid for all
consumption and generation, even if generation and consumption is located at the same
node. A generator in node i who sells electricity locally does not use the transmission
network, but will have to pay a transmission payment τii = τ c

i + τ p
i . We will call this

charge the price wedge, because this charge creates a wedge between the consumer price
and the generator price in node i15.

The next subsection continues with a discussion of the simulation exercises.

5.2 Low demand - No security of supply constraints

This simulation scenario assumes low demand (off-peak), no security of supply considera-
tions and welfare maximizing behavior at the side of the network operator. Due to the low
demand assumption, congestion is not an issue. The results can be interpreted as being
the results for running the electricity system in an off-peak period of one hour.

Two scenarios are compared, the first best and the second best. In the first best scenario,
competition in the generation market is perfect and the network operator maximizes welfare
without facing a budget constraint. The second best scenario is identical to the first best
scenario except that now the network operator maximizes welfare subject to a budget
constraint.

It is assumed that the network operator needs to obtain the same revenue in each
hour of the year, that is 74 087 (= 649 Me / 8760 h) e per hour. In subsection 5 this
assumption will be relaxed when we use the 4-period model.

Table 6 shows the simulation results for the first best and the second best cases in terms
of welfare, surpluses for the economic agents, the network operator costs, generation (and
consumption) level and the multiplier of the budget constraint. Quantities are expressed
in MW, but since the simulations cover a 1 hour period, they can also be interpreted as
MWh. Monetary values are expressed in million euro per hour.

In the first best scenario, generation is equal to 8 223MW . Consumer and producer
surpluses are 243 ke and 117 ke, respectively. Aggregate welfare, being the sum of these
values and the surplus generated by the network operator -74 ke equals 287 ke.

15With imperfect competition, the generator price is not defined.
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Low Demand 1st Best 2nd Best Rel. Change

Welfare (k€/hr) 287 282 101.6%

Consumer Surplus (k€/hr) 243 193 126.4%

Producer Surplus (k€/hr) 117 89 131.3%

Profit Network Operator (k€/hr) -74 0 -

Revenue Network Operator (k€/hr) 0 74 0.0%

Fixed Cost Network Operator (k€/hr) 74 74 100.0%

Multiplier Budget constraint (€/€) 0.000 0.149 -

Total Consumption (MWh/hr) 8223 7315 112.4%

Table 6: Period 4: Low demand without n-1 security constraints

Congestion on the grid is not an issue in this simulation and, therefore, the transmission
charges for consumption and generation are set equal to zero, i.e.

τ p
i = τ c

i = 0

The network operator is maximizing welfare and setting non-zero transmission charges
would create distortions without any need. As transmission is for free, there will be a
uniform end-user price for electricity in the Belgian market.

In the second best case, the network operator will set non-zero transmission charges
to obtain sufficient revenue to cover his costs. Standard Ramsey pricing will be used to
obtain this revenue. Transmission charges (τ c

i , τ g
i ) are set inversely proportional to the

demand, resp. supply elasticity in each node16. The total deadweight loss in the market is
minimized. Compared with the first best, the distortions in the reference scenario create a
total welfare loss of 1.6%. At the margin, generating 100e extra revenue for the network
operator creates a deadweight loss of 14.9e.

In this second best scenario, the end user prices will generally be higher than in the
first best case. As a result, demand and generation (7 315MW ) will be lower than in the
first best case (8 223MW ) . Higher end user prices imply a lower consumer surpluses, but
also the surplus of the generators (their profit) reduces due to the transmission charges.

5.3 High demand - No security of supply constraints

This subsection compares the first best and the second best in the case of high demand.
It neglects the n − 1 security constraints. These constraints will be added in the next
subsection.

If the network operator would set all transmission charges equal to zero in the first best,
then the network capacity would be insufficient to satisfy the demand for transmission.
Thus, congestion is an issue. Therefore, the network use must be charged in order to solve
capacity problems. The charges should be chosen such that distortions are minimized. The
best way to do this is to tax the effective use of the network, but not the ’intra-nodal’ trade,

16Because demand is linear and, by construction, has the same intercept in all nodes, elasticities are
identical in each node. As a consequence, all consumers face the same consumer charge.

The level and shapes of the marginal generation cost functions are different and therefore, different
charges are set at different nodes.
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High Demand 1st Best 2nd Best Rel. Change

Welfare (k€/hr) 865 864 100.1%

Consumer Surplus (k€/hr) 581 556 104.5%

Producer Surplus (k€/hr) 352 308 114.2%

Profit Network Operator (k€/hr) -68 0 -

Revenue Network Operator (k€/hr) 6 74 8.5%

Fixed Cost Network Operator (k€/hr) 74 74 100.0%

Multiplier Budget constraint (€/€) 0.000 0.025 -

Total Consumption (MWh/hr) 12413 12146 102.2%

Table 7: Period 1: High demand without n-1 security constraints.

i.e. the network operator will set the price wedge equal to zero, i.e. τii = 0 (τ c
i = −τ p

i ).
The reason for this is simple: setting a positive price wedge τii = τ c

i + τ p
i > 0, increases

the distortion in the local market at node i, but only has an indirect effect on the network
flows that cause the congestion. Therefore, it is best to set the price wedge equal to zero.
Note that this only makes sense for nodes at which both generators and consumers are
connected. Otherwise the price wedge does not play a role.

These congestion charges allow the network operator to collect a revenue equal to 8.5
percents of the fixed costs (Table 7). In the second best case, the network operator needs
to increase transmission charges from their first best level, in order to obtain sufficient
revenue for the remaining 91.5% (= 100% − 8.5%) of his budget.

Note that the impact of adding the budget constraint (second best versus first best) on
welfare and on the distribution of the surpluses is relatively small compared to its impact
in the ’low-demand’ scenario. The reason is that, in this scenario, congestion occurs in the
fist as well as in the second best case. Once congestion is ’solved’, the additional distortions
resulting from setting transmission charges that satisfy the revenue constraint are small.

5.4 High Demand - With security of supply constraints

In this scenario, n − 1 security constraints are added. The results are shown in Table 8.
Compared to the previous simulation exercise, the available transmission capacity has

reduced, thus congestion will be a larger issue than it was in section 3. However, on the
basis of a comparison of these two scenarios, its impact seems to be rather limited. The
first best, transmission charges will on average be higher in order to solve the congestion
problem, but apparently the charges have been changed primarily in a way that reshuffles
generation (and consumption) over the network without reducing total production. The
network operator’s revenue via congestion charges is now sufficient to cover 67.5% of the
costs. As revenue generation is not an objective for the network operator in the first best
case, he still minimizes distortions and sets τ p

i = −τ c
i

In the second best case, the network operator increases transmission prices from their
first best level, to cover the remaining 32.5% (= 100% − 67.5%) of his costs.

Table 9 and 10 show which lines are binding under the two scenarios. If the line in the
first column breaks down, the line in the second column will be loaded up to its thermal
capacity. The last column shows the shadow price of the thermal constraint of the lines
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High Demand - Contingency 1st Best 2nd Best Rel. Change

Welfare (k€/hr) 856 856 100.0%

Consumer Surplus (k€/hr) 563 554 101.7%

Producer Surplus (k€/hr) 316 301 105.0%

Profit Network Operator (k€/hr) -24 0 -

Revenue Network Operator (k€/hr) 50 74 67.5%

Fixed Cost Network Operator (k€/hr) 74 74 100.0%

Multiplier Budget constraint (€/€) 0.000 0.010 -

Total Consumption (MWh/hr) 12141 12044 100.8%

Table 8: Period 1: First best vs. Second best, Security constraints included.

First Best - High Demand

IF this line breaks THEN this line at limit Shadow Price

From To From To [€/MW]

Aubange Moulain (FR) Aubange Brume 20.3

Doel 2 Mercator Doel 2 Zandvliet 4.7

Jupille Lixhe Gramme Rimiere 19.3

LeVal Seraing Herderen Lixhe 53.3

Table 9: Congested lines in the first best model

that become constrained.
It should be noted that the results largely depend on the assumed distribution of

demand and better information is needed in order to get a more realistic prediction about
congestion in practice. However, these simulations clearly illustrate that the n− 1 security
constraints are important in analyzing congestion.

The simulations discussed so far were intended to illustrate the impact of demand and
of n−1 security constraints on the market outcome and on transmission charges. The next
subsection goes one step further and introduces a multi-period setting, and alternative
assumptions on the behavior of the generation and the network operator.

The congestion is in other locations than in Van Roy (2001). He found congestion on
the 150 kV network due to local over-production in the region Herderbrug – Rodenhuize.
There are three reasons why the results are different:

1. We assume a constant demand distribution over the nodes of network for all time
periods. Van Roy models the distribution of demand more detailed;

2. Our model does not include the 150 kV transmission lines;

Second Best - High Demand

IF this line breaks THEN this line at limit Shadow Price

From To From To [€/MW]

Aubange Moulain (FR) Aubange Brume 19.4

Doel 2 Mercator Doel 2 Zandvliet 2.9

Jupille Lixhe Gramme Rimiere 19.3

LeVal Seraing Herderen Lixhe 52.6

Table 10: Congested lines in the second best model
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All Periods - Contingency 1st . Best W - PC W - CO W - MO P - PC P- CO P - MO

Welfare (M€/yr) 4031 4012 3648 2920 2947 2334 1725

Consumer Surplus (M€/yr) 3047 2708 1643 828 847 503 271

Producer Surplus (M€/yr) 1622 1304 2006 2093 444 699 760

Profit Network (M€/yr) -638 0 0 0 1656 1132 694

Revenue Network (M€/yr) 11 649 649 649 2305 1781 1343

Fixed Cost Network (M€/yr) 649 649 649 649 649 649 649

Multiplier Budget Network (€/€) 0.000 0.070 0.373 0.706 0.000 0.000 0.000

Total Consumption (GWh) 84,998 80,120 62,258 44,178 44,676 34,374 25,252

Table 11: Aggregate results of the 6 scenarios.

3. Van Roy assumes that production levels are exogenous, while they are exogenous in
our model.

5.5 A multi-period setting with strategic behavior of generators
and the transmission firm

We consider 6 scenarios. For the network operator we evaluate two assumptions with
respect to his objective function: welfare maximization subject to a budget constraint
(index ’W’ ), and profit maximization (’P’ ). For the generation market structure we eval-
uate three assumptions: perfect competition (’PC’ ), Cournot competition (’CO’ ), and
monopoly (’MO’ ). The scenario W - PC is in fact the second best scenario discussed in
subsection 4, except that now 4 periods are considered. Therefore, the simulation results
are not immediately comparable. We will also report the results of the first best scenario,
i.e. welfare maximization without a budget constraint. All simulations were made with
the 4-period model and include the n − 1 security constraints.

Table 11 presents the consumers surplus, generation profit, the revenue, the fixed costs,
and the profit of the network operator, welfare and total generation for each scenario. In
the scenarios with welfare maximization subject to a budget constraint, the multiplier of
this constraint is also shown.

The results do not come as a surprise. Ceteris paribus, regulating the network operator
and increasing competition in generation increases welfare.

The multiplier of the budget constraint of the network operator measures the net cost
of giving one Euro to the network operator. The effect is about ten times as large with
monopoly than with perfect competition. The reason for this is that in the monopoly case
the distortion in the electricity market is already high, and obtaining extra revenue will
increase this distortion even more.

Table 12 shows the same results as Table 11, but now they are expressed relative to
the second best scenario.

What is the effect of regulating the network operator under the three alternative market
structures for generation? Table 13 shows the effect of introducing perfect regulation of the
network operator. Under perfect competition regulation increases welfare with 1 065 Me.
The profit of the network operator reduces with 1 656 Me and the consumers and the
producers gain 1 860 Me and 860 Me respectively. Total generation increases with 35.4
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All Periods - Contingency 1st . Best W - PC W - CO W - MO P - PC P- CO P - MO

Welfare (%) 100.49 100.00 90.94 72.79 73.46 58.17 43.00

Consumer Surplus (%) 112.53 100.00 60.66 30.56 31.30 18.58 10.00

Producer Surplus (%) 124.39 100.00 153.83 160.50 34.02 53.58 58.30

Profit Network ( - ) -  -  -  -  -  -  -  

Revenue Network ( - ) 1.75 100.00 100.00 100.00 355.13 274.39 206.94

Fixed Cost Network ( % ) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Multiplier Budget Network ( - ) -  -  -  -  -  -  -  

Total Consumption ( % ) 106.09 100.00 77.71 55.14 55.76 42.90 31.52

Table 12: Relative performance of the 6 scenarios. The Second Best situation (W - PC) is used
as a reference.

All Periods - Contingency  PC CO  MO

Welfare (M€/yr) 1065 1315 1195

Consumer Surplus (M€/yr) 1860 1139 557

Producer Surplus (M€/yr) 860 1307 1332

Profit Network (M€/yr) -1656 -1132 -694

Revenue Network (M€/yr) -1656 -1132 -694

Fixed Cost Network (M€/yr) -   -   -   

Multiplier Budget Network (€/€) -   -   -   

Total Consumption (GWh) 35444 27884 18926

Table 13: Effect of regulation, for the three generation market structures.

TWh.
From the table we can learn that regulation increases welfare, and is most effective

when there is Cournot competition in generation, and least effective if there is perfect
competition. Regulation decreases the profit of the network operator. Generators and
consumers share the increase in welfare. The sharing depends on the market structure of
the generation market. In the monopoly case, the fruits of regulation go mainly to the
monopolist. With perfect competition, the welfare gains go mainly to consumers.

Congestion in the network In the multi-period model, both the first best and the
second best scenario have congestion in the peak period. In the other periods, demand for
transmission is too low and there is no congestion.

6 Conclusions

This paper sets a first step in understanding the strategic behavior of a network operator
via a numerical simulation model. It looks at the pricing behavior of the network operator
in a market with transmission constraints and with imperfect competition in generation.
Consumers are assumed to be price takers in the electricity market. Generators are Cournot
players in production and sales, but they are price takers in the transmission market.
The network operator is a Stackelberg leader and sets the transmission price before the
generators decide about their production and sales.

The model is illustrated with some simulation runs. The parametrization of the model
is inspired by the technical characteristics of the Belgian electricity system. It includes the
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Belgian high voltage transmission grid, and the most important lines in France and the
Netherlands. The network is presented as a linearized DC-load flow model. Transmission
is limited by the thermal constraints of the lines and n−1 security constraints are imposed.
If one of the lines breaks down, then the remaining lines should be able to transport the
electricity.

The model studies 6 scenarios. It assumes a perfectly regulated network operator who
maximizes welfare subject to a budget constraint, and a non-regulated network operator
who maximizes profit. For the generation sector, it considers 3 market structures: Perfect
competition, Cournot competition, and a monopoly market.

Imperfect competition and a badly regulated transmission network both have the ex-
pected impact on welfare: they reduce it. (Perfect) regulation of the network operator has
the largest impact if there is Cournot competition in generation and the smallest if the
generation sector is competitive.

The paper illustrates that n − 1 security constraints should be modelled if one wants
to have an idea of the amount of congestion in the network.

The simulations presented in this paper are only intended to illustrate the possibilities
of the model. In its current form, and eventually with some extensions, the model can be
used to study many relevant policy issues concerning electricity markets. We give a short
non-exhaustive survey of possible extensions and applications.

The ownership structure and the location of the firms in the grid might be important
in determining the market power of the generators. If firms have geographically dispersed
production capacities, the effect of congestion might be much smaller than when each firms
is geographically concentrated.

Belgium is located between a low priced country (France) and the high price country
(the Netherlands) and it serves as a transit country. The model in the paper, could be
used to calculate the welfare impact of different levels of transit.

As most of the congestion on the Belgian network involves international transactions
it would be interesting to also include the Dutch, the German, and the French generation
markets and networks, as in Hobbs et al. (2002).

Consumers do not resell electricity and there is no arbitrage in the model. This could
be included and its impact could be studied. Appendix A shows how arbitrage can be
introduced in the model.

In the paper, we assumed that the generators are competing à la Cournot. A possible
extension is to assume that generators compete with conjectured supply functions, as shown
in Hobbs, Metzler, Pang (2000) and in Day Hobbs, Pang (2002).

The paper considers two extreme forms of regulation: no regulation and perfect regu-
lation. Other types of regulation could be introduced. For example, the regulator could
fix the average price over nodes and time periods while leaving the decisions about the
(linear) tariff structure to the network operator. The model can also be used to study the
welfare impact of alternative tariff structures, such as for example postage stamp tariffs.

To improve the modelling of the behavior of the network operator, his cost function
should be specified as a function of the use of the transmission network and should allow
for new investments in transmission lines. A welfare maximizing network operator might
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invest in more transmission capacity to increase competition in the generation market. A
model for the regulation of the network operator can then also be based upon his costs.

A Arbitrage

The model of Smeers and Wei (1997) has been extended by Metzler et al. (2003) and
Hobbs (2001) to include arbitrage. This appendix shows how arbitrage is introduced in
the model presented in this paper.

An arbitrageur can be modelled as an extra generator with index a ∈ F who has no
generation capacity Ga = ∅, and who is price taker in both the energy and the transmission
market.

The arbitrageur maximizes

max
sai

Πarb =
∑
i∈I

(pi − τ c
i ) · sai

Subject to: ∑
i∈I

sai = 0 (λp
a) (37)

The first order conditions of the arbitrageur are the following:

(pi − τ c
i ) = λp

a ∀i ∈ I (38)

With arbitrage, the price difference between two nodes need to be equal to the differ-
ences in congestion charges for consumers.

(pi − pj) −
(
τ c
i − τ c

j

)
= 0 (39)

Intuition: If the price pi is too high, arbitrageurs will buy electricity from consumers
in region j. The value of this electricity for consumers in node j is pj. If consumers reduce
consumption, they will save τ c

j on their transmission bill. They will sell their electricity
thus for a price pj − τ c

j . The arbitrageur will sell the electricity to consumers in region i
at a price pi − τ c

i . The consumers in region j have to pay the congestion charge before
consuming.
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