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Abstract

This paper develops pricing rules for stock-constrained
congestible facilities, such as an urban parking lot, swim-
ming pool or museum. Pricing schedules optimally com-
prise of two components. Firstly, a per-time unit fee in-
duces consumers to spend an efficient length of time within
a facility. Secondly, an arrival time fee induces consumers
to spread arrivals efficiently across the peak-period. The

pricing rules are illustrated with a small numerical exam-

ple. JEL H42;R48.
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1 Introduction

Economists often model congestion in a 'reduced-form’ manner. For
instance, in club theory, it is often assumed that the average user
benefit from joining a congestion-prone club declines as the number
of other users increases. Or, in transport economics, the average
driving speed is assumed to fall as more people use the road.

In recent times, however, authors have modelled the congestion
technology in an explicit manner. One well known model is the
bottleneck model of road congestion, which explicitly models the
flow constraint on the road. The width of the road is such that only
s cars per hour can pass through the bottleneck.

This paper concentrates on a third formulation: a congestible
facility which is subject to a stock constraint. For example, there
are only S parking spots available in the central area of a city. Sim-
ilarly, fire regulations may permit a maximum of § people inside a
museum at any one time, or a swimming pool. Expected wait time
to use the facility at time ¢ depends on the time path of both the
arrivals up until ¢ and the length of time each of these users remains
inside the facility. In full generality this a complex problem. Fortu-
nately, a subset of the theory on queueing provides the mechanics
to simplify the analysis. This paper derives an optimal pricing func-
tion for a congestible facility. The pricing schedule comprises of two
components: a per-time-unit of stay fee induces users to remain in
the facility for the optimal length of time; while a time-varying ar-
rival fee induces drivers to schedule arrivals optimally over the peak
period.

Section 3 uses a single-time period model to derive the optimal
per unit time fee. Section 4 expands this model to a multi-period
problem, in which users choose both the length of time to remain

within the facility, and schedule a time to arrive at the facility.



Unfortunately, closed-form solutions for the optimal per time unit
fee and arrival fee cannot be derived. Section 5 presents a numerical

model that illustrates the theory. Section 6 concludes.

2 Literature review

Table 1 distinguishes various characteristics which define the gener-
alised form of the standard bottleneck model (Type 1)!. A variable
number of heterogenous consumers decide whether to use a facility
or not and at what time to join the queue. The congestion takes the
form of delays rather than service denial. The model is therefore
not suitable to a concert in which tickets may sell out and further
applications for service are denied. Access to the facility is on a
First-In, First-Out basis (FIFO). There is no possibility for jump-
ing ahead in the queue. As stressed by Arnott and Kraus, [2], the
state variable determining the evolution of the queue to time tis
based only on arrivals at time ¢plus the time path of arrivals during
all previous time periods. This makes the model unsuitable to a
network traffic model, where earlier departing commuters may be
held up by late departing local residents. Finally, the congestion
is caused by a flow constraint of the facility: only susers can pass
through per unit time, and if arrivals are greater than s, determin-
istic queues develop. Optimal pricing is achieved via a continuously
time-dependent fee, F(t). FExamples of facilities to which this model
may be well suited include a single-link road (with no overtaking),
or a golf course without a reservation scheme, or a large capacity no

reservation concert.

LA detailed discussion of the generalisation of the bottleneck model (Type 1) is found in
Arnott and Kraus [2].



Type 1 Type 2 Type 3
authors [9]; [1]; [2]; [6] [8]; [5]; [6] this paper
users heterogenous identical identical
decisions to visit or not to visit or not
when to use to schedule use | to schedule use
how long to stay
congestion | deterministic delay | stochastic delay | stochastic delay
queue FIFO FIFO FIFO
constraint | flow stock stock
fee F(t) Et pith Et pszt—l—ml (m)
e.g. single-link road hub airports parking
no res golf swimming pools
no res concert art galleries

Table 1: Characteristics of bottleneck models

Daniel [5] applies the bottleneck equilibrium concept to a stochas-
tic queueing model of a hub airport. Sdeparture and landing lanes -
1.e. a stock constraint - determines expected queues at discrete time
intervals via a non-stationary stochastic queueing model (M (t)/D/S/K?),
developed by Koopmans [8]. This is shown in the column marked
"Type 2’ in Table 1. A fixed number of users (who may act collu-

sively) decide when to schedule arrivals. Fach user is subject to a

2In standard Kendall-Lee Notation for queueing systems, M denotes that interarrival times
are independent, identically distributed random variables having an exponential distribution
- the dependence on t refers to the time dependent evolution of the queue; D denotes that
service times (the length of stay) are iid and deterministic; § denotes the number of parallel
servers while K denotes the maximum number of customers in the system. Further description

is given in section 4 below.



shock such that actual arrival time is given by a known distribution
around scheduled arrival time. The model is solved for an equi-
librium vector of scheduled arrival times such that no user has an
incentive to shift scheduled arrival time. A comparison of empirical
results for an airport using a standard peak-load pricing model, a
deterministic bottleneck model and a stochastic bottleneck model is
presented in Daniel and Pahwa [6].

This paper generalises Daniel’s model and is shown as column
"Type 3’ in Table 1. Firstly, each user must decide how long to
remain within the facility. Secondly, variable demand is introduced
such that an infinite number of potential users decide whether or
not to use the facility. In equilibrium, the number of users is such
that the consumer surplus from using the facility equals the sum of
expected schedule delay and queueing costs. If the consumer surplus
is greater than the expected cost of using the facility, additional users
gain by using the facility. Likewise, if the cost of using the facility
is greater than the consumer surplus, some users decide not to use
the facility.

The welfare maximising fee includes a component related to ac-
tual arrival time and a component related to length of stay within
the facility. The separability of these decisions implies that a two-
part tariff pricing scheme is optimal. Before turning to the full
model, however, it is useful to see the mechanics of a simpler queue-

ing model in a single time period version of the model.

3 A single-period version: a M/D/1 model

I consider an economy with an infinite number of identical risk-
neutral consumers. In a single time-period of time of length ¢,
consumers decide whether or not to use a congestible facility. A

consumer decides to use the facility as long as the net benefit from



making the trip is non-negative. Each person’s benefit from the trip
varies in function of the time spent within the facility. The facility
has a fixed capacity (set for convenience equal to 1spot) - and the
visitor may have to wait to gain entrance into the facility.

In order to use the simplifying mathematics of queueing theory, I
assume that the actual arrival time of any user differs from planned
arrival time: each consumer is subject to a shock given by an inde-
pendent and identically distributed random variable such that the
number of actual arrivals to occur in a time interval of tfollows a
Poisson-distribution with parameter nt, where ndenotes the number
of facility users within the single time period. Each potential user
is therefore unsure of his or her actual arrival position relative to
other users within the time period. Without loss of generality, I set
i =1.

The length of time a user spends within the facility is a determin-
istic variable given by ¢. The marginal benefit of a unit of time in
the congestible facility is given by 1 — ¢, where ¢gives the time spent
within the facility. Hence the consumer surplus, €S, conditional on
gaining access to the facility, from a stay of funits of time, at price

mper unit time (0 <m < 1), is given by:

A
Cs= [ (1= q-mdg &

It is clear that an individual maximises consumer surplus by stay-
ing in the facility for ¢(m) = 1 — munits of time.

Given the above assumptions, and applying the standard Pollaczek-
Khintchine formulas® (Winston, [10] pp.1147 equation 4R) expected

3With a deterministic service rate, expected walting time EW is given as:

A
EW [ pl = IR

where A is the arrival rate, p is the service rate (equal to one over the length of stay) and

p==.



waiting time EWto use a single-server facility is given by*:

EW [n,m] :% (2)

This waiting time function is strictly convex in arrival rate and
in user time, as long as the fee is such that users wish to park for
a strictly positive length of time. This implies that the facility is
subject to congestion: average wait time for existing users rises if one
more consumer decides to use the facility. The expected queueing

cost per person of using the facility is given by:

K [n,m]= aEW [n,m)] (3)

where ais the value of time spent in the queue (henceforth set
equal to 1for ease of notation). The expected net benefit of visiting
the facility, NB, can be written as a function of the number of users

and the per time unit fee:

NB[n,m]=CS8[m]—k[n,m] (4)

Each consumer decides whether to use the facility or not. The
equilibrium number of consumers, n*, is given by the solution to the

following equation:

CS[m]—k[m,n*]=0 (5)

Consumers decide to use the facility as long as the expected ben-

efits from doing so outweigh the expected costs. In equilibrium, the

4Strictly speaking, this expression only holds if A < 1 - otherwise the queueing system
’explodes’. The condition holds in equilibrium as can be seen from expanding n* [m]£* [m]

via equations 6 and 77, which is less than one.



expected queueing costs exactly match the consumer surplus gained
from using the facility: no-one individual has the incentive to switch
from using to not using the facility and vice-versa’.

Equations 5, 3, 1 and 2 can be used to solve for an equilibrium
mean number of facility users, n*, as a function of m. This is given

as:

n ) =5—— (©)

The impact of increasing mon the equilibrium arrival rate de-
pends on two opposing effects. Increasing mreduces the amount
of time spent in the facility, ¢[m]. Consumer surplus falls. For a
fixed queueing cost function, therefore, the equilibrium number of
arrivals falls. But as each user spends less time in the facility, ex-
pected waiting costs decline, thus decreasing the cost of making a
trip. By taking the first derivative of the equilibrium arrival rate, it
can be shown that the net effect of raising the per time unit fee is
to increase the arrival rate: n*' [m] > 0°.

Figure 1 shows expected costs and benefits from a trip as a func-
tion of the number of facility users. The subscript L. denotes a rel-
atively low per time unit fee of 0.25, while the subscript H denotes
a higher fee of 0.5 per time period.

Expected queueuing cost per user, k, rises as a function of the
number of users, while the consumer surplus from visiting the fa-

cility is independent of the number of other users. For a relatively

5One is reminded of the story of two people discussing a new restaurant. One says to the

other: 'no one goes there anymore - it is too crowded’.

6This point is also made by Glazer and Niskanen [7] in the last section of their paper. They
use this result to argue that raising per time unit meter fees may result in increased arrivals
and hence increase congestion levels. However, they do not consider the feedback of higher
congestion levels on the equilibrium number of arrivals. Nor do they discuss the optimal meter

fee.



costs, 0.471
benefits
L
0.31 CS

0.2 B
Ky
CcS, :
0.1f
0 0.2 0.4 0.6 T 0.8 1
r* n*
L H

Number of facility users, n

Figure 1: The equilibrium number of facility users

low per time unit fee, expected queueing costs entirely offset con-
sumer surplus once n} users make the trip. Increasing the fee reduces
consumer surplus. For a given cost function, this would reduce the
equilibrium number of facility users. But, by inducing people to use
the facility for a shorter period of time, the cost function falls to
kz. The reduction in expected queueing cost is sufficiently large to
outweigh the fall in consumer surplus: the equilibrium number of
users increases to nj.

As a result of the endogenous arrival rate given in equation 5,

social welfare, SW, is given by:

SW ] = n* ] mt ] == ™)

(7)

2—m

Social welfare is equivalent to total revenue: it follows that a pri-
vate operator that maximises profit sets a meter fee at the socially-
optimal level. This is a striking result. It follows directly from the

endogenous arrival rate. If no fee is charged, social welfare is zero.



Either individuals use the facility - in which case, in equilibrium,
the expected queueing cost exactly outweighs the consumer surplus
- or they do not. Either way, social welfare per person is zero. At
any positive meter fee level, there is a wedge between the consumer
surplus and the social surplus from using the facility. Expected
queueing costs exactly offset the consumer surplus, leaving the dif-
ference between social and consumer surplus (i.e. the tax revenue)
as a measure of welfare.

Maximising equation 7 with respect to the meter fee, gives the

optimal per time unit fee as:

m=2—/2=0.59 (8)

A second point follows from the formulation of the social welfare
function in expression 7. Any level of time restriction - a common
alternative to a meter fee - results in zero social welfare’. For each
successive tightening of the restriction, more new users will arrive at
the facility such that social surplus is zero. This can be seen directly

by setting m = 0in equation 7 above.

4 A multi-period version: a M [t] /D/S/Kmodel

The previous model is limited. It assumes a single time period,
while in reality customers can also decide whether to use the facility
during busier periods or not. This section applies non-stationary
queueing theory to derive a bottleneck equilibrium: each consumer

trades off expected queueing costs and schedule delay costs such that

"The relative inefficiency of non-decreasing non-linear pricing mechanisms as a means of
rationing the urban on-street parking market is discussed in Calthrop and Proost [4]. In that
paper, the additional consumer surplus resulting from a time restriction, in comparison with

a meter fee, induces excessive search behaviour.

10



in the equilibrium, no individual has an incentive to alter scheduled
arrival time. As in the previous section, once a consumer gains
access to the facility, she decides how long to stay as a function of
the per time unit fee. A notional planner is assumed to maximise
social welfare with respect to two instruments: a fee dependent on
time of arrival into the queue, plus a linear fee per time unit spent
within the facility. Given this restriction on instruments, welfare
is optimised with a time dependent fee spreading arrivals efficiently
across the peak period, and a per-time unit linear fee inducing users
to stay within the facility for an optimal period of time.

I assume that the evolution of the queue over time is given by
an M [t] /D/S/K queueing system. In standard Kendall-Lee Notation
for queueing systems, Mdenotes that interarrival times are indepen-
dent, identically distributed random variables having an exponential
distribution - the dependence on trefers to the time dependent evo-
lution of the queue; Ddenotes that service times (the length of stay)
are 1id and deterministic; Sdenotes the number of parallel servers
while Kdenotes the maximum number of customers in the system.
I assume that after a person exits from the facility another user
can enter whom in turn exits after funits of time. A sequence of
points ¢, t,.... marked on the time axis can be imagined, all spaced
at distances ¢ apart representing the deterministic epochs of service
completion. Following the discussion in Koopmans [8], T confine at-
tention to the queue at these points: at each one, if the number in
the queue had previously been positive, just Swill be removed. The
number of arrivals in each service period is approximately Poisson
distributed with time varying parameter, \;. A state vector, ¢, rep-
resents the state of the queueing system at each period ¢. It consists
of a column of elements, ¢q, ¢, ...., qzx which give the probability the
queue is of length kat the beginning of the period ¢. The state

vector evolves according to the transition rule:

11



qt+1= QtQt (9)

where Q,is the state-transition matrix determined by the M [¢] /D/S/K

queueing model and the arrival rates \;. Let ndenote the number of

drivers that choose to use the facility. I denote the column vector

of scheduled arrival times by s(of dimension n). The probability of

a customer i, scheduled to arrive at time si,actually arriving at time

tis given by p;’. The average arrival rate is given by summation of

expected arrivals at any time ¢ :

A= p}’ (10)
=1

Appendix A gives more details on the state-transition matrix

Q. [¢,s,n]. To aid comparability, the notation is chosen to follow as

closely as possible the model in Daniel [5].

4.1 The expected cost of accessing the facility

The expected cost for consumer i(i = 1,.....,n)of gaining access to the

facility is again given by x; [Jwhich is the sum of expected queueing

costs, schedule delay costs and an arrival fee, and is defined below

in equation 12.

Define the expected waiting time for a user who arrives at time

twith kother people in the queue as w[k]. All consumers wish to use

the facility at the same time, ¢*. Schedule delay costs are given by:

SDC:{ Bt —t—wlk]) if —t—wk]>0
vt +w[k] — ) otherwise

where Gis the value of time when arriving earlier than desired at

the facility and +is the corresponding measure when arriving later

12



than desired®. To ease notation, I introduce a dummy variable:

{1 it ot —t—w[k] >0
d=

0 otherwise

The expected queueing and schedule delay costs of arriving at

time twith queue kis given by:

cor=ow [k] +dB(t"—t —w[k]) + (1 — d)y(t +w [k] —t*)

where, as in the previous section, adenotes the value of time spent
queueing. The vector of costs for different queue lengths &£ =0,.., Kis
given by ¢;. For any given number of customers, n, the expected

cost of arriving at ¢, C; []is given by:

Ct [m7 S,TL] = Ctqy [m7 S,TL] (11)

The expected consumer cost of scheduling to arrive at s', &;, is

given by:

[m,s,n,F]= Zp {Cy[m,sn] + Fi} (12)

where p*, as defined earlier, gives the probability of a user sched-
uled to arrive at time s‘arriving at time ¢. The vector Fgives the
arrival fee, F;, for all possible arrival times.

rigives the cost of gaining access to the facility for any individual
, for any number of users, n; for any vector of scheduled arrival

times, s, and any vector of arrival fees, Fand per time unit fee m.

81t is assumed that schedule delay costs take a linear form: this keeps the analysis signifi-

cantly simpler.

13



4.2 Consumers’ problem

Each consumer maximises the expected net benefit of a trip with
respect to the scheduled time of arrival and length of stay. The
consumer surplus from time spent within the facility is given as in
the section above, and thus we can write ¢[m]. The net benefit from

making a trip is therefore given by:

NB[]=CS[m] — &, [m,s,n,F]

Fach consumer takes the cost C,[]as parametric: thus ignoring
his or her effect on expected waiting and schedule delay costs of
other facility users. For any given number of facility users, the

optimisation problem is given by:

MaxNB[m,s,n,F] (13)

The first-order condition with respect to scheduled arrival time

1s such that:

[m,s,n]+ F}=0 (14)

i op;
Y
A consumer equilibrium (in scheduled arrival times) is given by

the following conditions. For a given level of o, 3,and v, the following

equations must hold: 10, 9, 11, plus:

[m,s,n,F]= Zpt {C,[m,s,n] —|—Ft}§2p§i/ {Cy[m,s,n] + F;} for all 5"
t
(15)
which implies that:

k' [m,smn,F] = k[m,n,F] for all i

14



In a bottleneck (Nash) equilibrium, no one user can adjust his
or her scheduled arrival time to reduce expected queueing costs,
scheduled delay costs and entrance fee. In equilibrium, therefore,
private user cost xis equal for all users.

As in the equation 5, it is straightforward to solve for the equilib-
rium number of arrivals. Given a bottleneck equilibrium in schedul-
ing times and optimal length of use, the equilibrium number of ar-

rivals, n* [m,F], is given implicitly by:

k[m,n",F]= CS[m)] (16)

4.3 Social welfare

Using the equilibrium number of arrivals given in condition 16, (ex-

pected) social welfare is given by:

SW [m,F]=n" [m,F]m Z Zpt F, (17)

As in the single time-period version of the model, social welfare is
given by total revenue - the difference between social and consumer
surplus on this market.

The social planner can maximise this objective function with re-
spect to the per time unit fee, mand the vector of arrival fees, F.
Taking the first-order conditions with respect to the meter fee re-

veals:

n

op;t 0
n* (1 —2m) +ny, { —l—prnFt} +ZZ pt —SFt (18)
0 ¢

where n,,denotes the derivative of the equilibrium number of ar-

rivals with respect to the per time unit fee. Marginally increasing

15



the meter fee from a low level increase revenues collected from the
original set of facility users - this is captured in the first term. The
second term shows that account needs to be taken of the effect of
increasing meter fees on the equilibrium number of arrivals. The
sign of this term is not obvious a priori. By reducing mean length of
stay, mean queue length decreases and for a given number of users
and arrival fees, the value of kfalls. However, so does the consumer
surplus from making a trip. Whether more or less drivers will use
the facility in the new equilibrium depends on the net impact of
these two opposing effects. The third effect gives the impact on to-
tal arrival fee revenues from the induced changes in scheduled arrival
time that result from the change in mean length of usage.

The first-order condition for a particular arrival time fee Fis given

by:

Sy apk
{ e+ Y Ft}+zz e (19
The marginal increase in an arrival fee at time talters the equi-
librium consumer surplus from drivers and thus the total number of
arrivals. The first term captures the change in revenues from any
change in the number of facility users. The second term captures

the effect of altered scheduling on expected arrival fee revenues.

5 Numerical example

The system of first order conditions given by equations 18 and 19,
do not lend themselves to a closed form solution solution for the
optimal tax rates. In order to illustrate the theory, I present a
small numerical example. The model is designed to illustrate the

mechanisms at work.

16



— exp queue
——exp sch
= gexp tot

)

expected arrival time in facility

Figure 2: no fee bottleneck eqm

To simplify matters, I consider an M [t] /D/1/20queueing model,
although the number of servers and queue limit can easily be ex-

tended. Desired time of usage of the facility, ¢*, is set equal to 0.

5.1 The no-fee consumer bottleneck equilibrium

In the absence of a per time unit fee, each consumer uses the facility
for ¢[0]time units, given by 1. Figure 2 gives a equilibrium pattern of
scheduled arrivals for N consumers such that €S [0] = «; [0,7[0,0] ,0]for
all 1. The expected combined queueing and schedule delay costs
equals 9.09 for all scheduled arrival times. The consumer that arrives
at the facility closest to the desired arrival time faces the lowest
expected schedule delay costs. Hence in equilibrium, this consumer
must face the highest expected queueing costs. Note that the first

arrival at the facility occurs at around -5 and the last at around 5.

17



5.2 Optimal fee structure

The government sets a uniform meter fee, mand a vector of arrival
fees, F, to maximise social welfare. The numerical model can be
used to illustrate the effect of each tax separately. First, consider
that demand remains fixed at 7 [0,0land the government uses the
vector of arrival tolls to minimise social costs of using the facility.
Figure 3 shows the result. The upper curve shows the combined
queueing and schedule delay costs for each individual. This cost
is smallest for the consumer arriving in the facility at the desired
arrival time. It is clear that without an arrival fee, this distribution
of arrival times could not be in equilibrium. A consumer arriving
at the edge of the peak would have the incentive to switch to arrive
nearer the desired time of usage. The result of this process would be
the distribution of arrivals given in the no-fee equilibrium in Figure
2 above.

Figure 4 shows the arrival fee necessary to decentralise the desired
distribution of arrivals. Note that the fee is based on the time of
arrival into the queue and not into the facility. With a first-come
first served queue discipline, any fee schedule based on arrival time
into the queue can be translated into a fee schedule based on arrival
time in the facility.

The optimal scheduling of arrivals results in the average social
cost of queueing and schedule delay costs falling from 9.09to 6.47.
This occurs in part by spreading the arrivals over a longer period.
Under optimal arrival-toll equilibrium, the first arrival occurs almost
at -10, whilst the last occurs at 10. The peak-period is almost twice
the length of the no-fee equilibrium peak. This demonstrates the
importance of using a time-of-arrival dependent fee to spread arrivals
away from the desired time of usage. This corresponds to the results

derived in the context of airport congestion pricing by Daniel [5] and

18
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Figure 3: social optimal scheduling

Figure 4: Time of arrival fee schedule
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Figure 5: Social optimal scheduling

Daniel and Pahwa [6]. Secondly, the equilibrium average private
cost of using the facility rises from the no-fee equilibrium of 9.09to
11.4with the optimal arrival fee schedule. However, the net consumer
benefit from using the facility, CS[0Jremains constant. Hence, by
equation 16, the equilibrium number of users must fall such that
average private cost equals CS[0]. Further computations show that
the equilibrium number of users is approximately 80%of those in the
no-arrival fee equilibrium, n [0,0].

Figure 5 shows the equilibrium distribution of arrivals when the
per time unit fee rises from zero to 0.4. Each consumer uses the
facility for a shorter period of time, and hence the net consumer
benefit from using the facility, CS[0.4]falls to 3.27. With an equi-
librium number of users, this must also equal average equilibrium
private user cost, x[0.4,n*,F]. The model results indicate that the
optimal number of users falls to approximately 73% of n[0,0]. The

average social cost of using the facility is 2.05.

20
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Figure 6: Equilibrium number of facility users

Figure 6 presents the model results on the relationship between
the per time unit fee (with optimal arrival fee schedule) and the
equilibrium number of users. Recall from the simplified model above
(section 3) that for the M/D/1model, n' [m] > 0.Raising per time unit
fees leads to a reduction in consumer surplus (for a fixed number
of users), but this is more than offset by the reduction in expected
queueing costs from the reduction in average length of stay. Hence
the equilibrium number of users rises. In this model, increasing me-
ter fees also leads to a reduction in consumer surplus for a given
number of users. With a more complicated queueing technology,
however, the reduction in expected queueing costs and schedule de-
lay costs from average shorter stay is insufficient to offset the loss
in consumer surplus. Hence the equilibrium number of users falls as
the per time unit fee rises.

Finally, Figure 7 shows the relationship between total revenues

21
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Figure 7: Social welfare

collected and the per time unit fee (with optimal arrival fee schedule
and equilibrium number of users). Recall from equation 17 that
social welfare can be measured by total revenues collected. Hence

Figure 7 shows the optimal per time meter fee is approximately 0.25.

6 Conclusion

This paper has extended the stochastic bottleneck model to include
an additional important margin of consumer behaviour: namely,
how long to remain within a congestible facility, and for elastic num-
ber of users. The model is therefore suitable to a broader range of
congestible facilities than previously considered. In setting optimal
fees for urban parking spaces, public swimming pools or art galleries,
it is clear that how long customers spend within the facility affects

the probability of having to queue. In addition, the fee structure
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also needs to give sufficient incentive for customers to spread-out
their planned arrivals around any desired time of usage. The opti-
mal two-part tariff fee structure is captured in the solution to the
two first order conditions given in 19 and 18. This seen more clearly
in the numerical example. Customers would pay a per time unit fee
equal to 0.25and an additional access fee dependent on time of entry
into the queue.

Some caveats on the main findings are required. Firstly, the
model assumes a single-preferred time of use for the facility. This is
a simplification and further work should examine the implications of
relaxing this assumption and allowing for a distribution of desired
arrival times. More generally, the assumption of identical individuals
needs to be relaxed.

Secondly, the model restricts government (or a private operator)
to using a linear meter fee independent of time of arrival. The basic
optimality result of a two-part tariff depends on this restriction.

More general non-linear pricing schemes will be considered.

7 Appendix A

Define a = A £°. The state-transition matrix of the queueing system is given

by: i
e % e—a 0 0 0
ae”® ae”® ea 0 0
%—?67“ %—?e’“ ae”® e 0
Q=
%eia %eia %eia (?{Kii?)a)zefa %e*
UK UK UK -1 Ug

The first three columns represent the first S + 1 columns in the matrix Q;. ~

9To ease notation, I do not indicate that a is a function of the expected number of arrivals

in each time period A and the length of time that each user stays for £.
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Element ij (where i < K;j < S+ 1) gives the probability (assuming a Poisson
distribution of arrivals) of ¢ — 1 arrivals occuring during a period of length ¢
with an average arrival rate of A\;. The remaining four columns represent the
other K — S columns of the matrix. Flement ij (where i < K;j > S+ 1) gives
the probability of ¢ — 7 + S arrivals.

Consider the probability of n people being in the queue at time ¢t 4+ 1. This
event can evolve from the period t in a finite number of ways only. For instance,
0 people in the queue at time ¢ and n arrivals during the ¢ units of time between
t and t + 1. Equally, it can occur with 1 person in the queue at time ¢ (who
then enters the facility at t) and n arrivals. Or 2 people at time ¢ and 7 — 1
arrivals. And so forth.

The state-transition matrix gives the relevant probabilities of various num-
bers of arrivals during a period of length ¢. Multiplying this by the vector
of probable states of the queue in period t gives the vector of probable queue

lengths in period ¢+ 1.
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