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Abstract

This paper studies the market power of generators in the electricity market when transmis-
sion capacity is scarce. We consider a simple world of two generators providing electricity to
their consumers through a single transmission line.

In the literature, different Cournot equilibrium concepts have been developed. This paper
applies these concepts and explains the implicit assumptions on the behavior of the System
Operator made in those papers.

We show that these implicit assumptions are not realistic. For an alternative role of the
System Operator, we solve the Cournot equilibrium and compare the outcome. Furthermore,
we show that the axiomatic equilibrium concept of Smeers and Wei (1997) is linked with the

model of Oren (1997) and can also be defined as a Nash Equilibrium.

*This research has been funded by the Fund for Scientific Research - Flanders, project number G.0344.00.
For helpful discussions and comments I thank Guido Pepermans, Stef Proost, Patrick Van Cayseele and Isabel

Vansteenkiste. This paper has been presented at the Annual European Energy Conference 2000 (Bergen, Norway).
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1 Introduction

Many countries are currently liberalizing their electricity industries. This process is usually viewed
as a shift from tight regulation of vertically integrated monopolies to light regulation of function-
ally separated firms. This shift has been justified by changes in technology, such as diminished
economies of scale in electricity generation.

To enhance competition, most countries separate the transmission services from the generation
activities. The European directive foresees the unbundling of the electricity sector in generation,

transmission, and distribution.

1. Generation is the production of electricity by a mixture of mostly large power plants. Al-
though only a few large generators exist, contestability of the electricity market is viewed

sufficient to limit market power.

2. Transmission is the transport of electricity over the high voltage grid. Most generators are
directly connected to this grid, as are large industrial consumers. Since economies of scale in
transmission services are large, transmission is a natural monopoly. Besides that, reliability
concerns require a close coordination. Therefore, in all countries we have a single, regulated

firm — the System Operator — operating the transmission grid.

3. Distribution is the local, low voltage provision of electricity for small users. The European

directive does not oblige the member countries to organize competition in distribution.

In this paper we study the imperfect competition in transmission capacity and generation. The
capacity of transmission lines is limited by technical constraints. It cannot be extended easily since
building transmission lines takes a long time, and there is a strong opposition by environmentalists.
Therefore, the opening of the electricity market will be limited by transmission capacity in the
next ten to fifteen years.

We assume that the electricity market is centrally organized, this means that the System
Operator owns and allocates all transmission capacity.! This setting is easier to model than the
decentralized system, where we explicitly have to specify the market for transmission rights.

Many authors studied this problem by building Cournot type of models. But they do not
obtain the same results nor do they specify their assumptions. In particular, they do not clarify
the role of the System Operator.

The aim of this paper is to apply the different models to a simple electricity market with one

transmission line. This allows us to classify these models, in function of the precise role of the

!Section 2 explains the difference between the decentralized and the centralized organization.



System Operator. Additionally, we formulate some alternative assumptions for the behavior of

the System Operator and examine how this affects the results.

Structure of the paper In section 2 we will summarize the relevant literature of industrial
economics in the electricity market. In section § we present a simple problem of a generation
oligopoly on a grid with only one transmission line. Section 4 studies two models where the
System Operator does not set transmission prices, but allocates transmission capacity. In section
5, we look at models where the System Operator both sets transmission prices and allocates

transmission capacity. Section 6 concludes the paper.

2 Literature Review

Basically two alternative organizational structures exist in the electricity market: the decentralized

systermn and the centralized system. In practice a mixture of both systems is commonly used.

2 In the decentralized system, the market is responsible for determining

Decentralized System
electricity prices and transmission prices. Two markets exist: one for electricity, where electricity
prices are set, and another for transmission capacity, where transmission prices are set. The
System Operator is responsible for the safety on the grid. Examples of decentralized markets can

be found in the Netherlands, the Nordic countries, and in California.?

Centralized System®*

In the centralized system, prices are not determined by the market. The
generators and the consumers announce the System Operator their willingness to supply and to
consume electricity. They do this by submitting a Supply Function or a Demand Function to
the System Operator. This System Operator tries to achieve market equilibrium. By solving a
complex optimization problem, thereby taking into account all constraints, he decides upon the
quantities of consumption and generation. He sets the prices of electricity and transmission equal
to the dual values of the constraints. In the centralized system, the System Operator plays the
role of an auctioneer. Generators and Consumers trade with the System Operator and not directly
with each other. Examples of centralized operation are the former England & Wales market, and
the National Australian market.

We review only the literature of the centralized market organization. First we look at compe-

tition in generation, after that at competition in generation and transmission.

?Chao and Peck (1996) provide more information about the decentralized organization of the electricity market.
3Very few countries have effectively implemented a transmission market.
*Schweppe, Caramanis, Tabors and Bohn (1988) and Hogan (1992) explain the centralized market.



2.1 Competition in Generation

Because of the existence of the System Operator in his role of auctioneer, we can put some
institutional detail in the models. Firms simultaneously bid a supply function — i.e. a price
quantity relation — to the System Operator.

The models found in the literature differ in the type of supply function they allow for: differ-

entiable supply functions or step supply functions.’

Differentiable Supply Functions The concept of differentiable supply functions is based on
Klemperer and Meyer (1989). They show that when the demand function for electricity is known
for certain and firms announce a differentiable supply function, an infinite number of Nash equi-
libria exists. However, when the demand function is uncertain, the supply function has to be
appropriate for several situations, and the number of equilibria diminishes® Under certain condi-
tions, the differentiable supply function equilibrium becomes unique.

Green and Newberry (1992) apply the model of Klemperer and Meyer for the two largest
generators in the English market.” By adding an output constraint for each generator they can
reduce the set of equilibria. Furthermore, they assume that the generators will coordinate on
that equilibrium which would give them the highest total profit. The model predicts that in the
absence of threat of entry the two generators are able to sustain a non-collusive equilibrium in

which prices are well above operating costs.

Step Supply Function Generators submit an offer price for each individual plant at which
they are willing to supply their given capacities, i.e. they offer step-supply functions. Von der
Fehr and Harbord (1993) argue that the ”step length” is not small enough to consider the supply
function as a differentiable supply function.

Bidders offering more than one unit have an incentive to increase their bids at high quantities.
If a bid sets a high equilibrium price, it applies to all inframarginal units. Wolfram (1998) finds
empirical evidence that this is the fact in the UK.

2.2 Competition in Generation and Transmission

One of the major drawbacks of the models mentioned above is that they do not incorporate the

spatial structure of the market. Since the direct costs of transmission are small, introducing these

°In the literature the equilibrium with differentiable supply functions is called the ’supply function equilibrium’

and the models that use a step supply functions are called 'multi-unit auctions’.
SKlemperer and Meyer consider horizontal shifts of the demand function.
TOther studies using this model are Bolle (1992), Newberry (1998), Green (1996) and Rudkevich, Duckworth

and Rosen (1998).



costs would only lead to minor changes in the results® On the other hand, when a line becomes
congested it will have a large influence on the electricity market.” As the differentiable supply
function and step supply function models are not (yet) applicable in a market with transmission
constraints; most researchers opt for a sort of Cournot market. They drop some of the institutional
complexity of the actual market.! Wolak and Patrick (1996) suggest in an empirical study that
Cournot competition is an appropriate representation of the market. They argue that the market
power of the dominant generators is manifested through those generators declaring certain plants
unavailable to supply in certain periods. We will study the Cournot models of Oren (1997), and

Smeers and Wei (1997) in more detail in this paper.!!

3 Description and Classification of the Game.

In this section we discuss and classify the game used in this paper. The first subsection describes
the set-up of our game. The next two subsections examine this game when the transmission
capacity is infinite and when it is finite. In the last subsection we discuss the role of the System

Operator.

3.1 Description of the Game

We will model the simplest transmission grid possible: a single transmission line connecting two

generators in city North (N) with electricity consumers in city South (S).!2

®The direct transmission cost is approximately 5 % of total electricity cost for large consumers.
9When a line becomes congested it will have an influence on the electricity market in two ways. (1) With conges-

tion, the electricity market is no longer a single market where all generators compete with each other. Instead, the
transmission constraint segments the market in local distinct regions, increasing the market power of the generators.
(2) Since transmission capacity is a scarce good, there is a rivalry for the use of the constrained line. Generators

who have the right to use the line can get a scarcity rent.
'0The Cournot game could be seen as a game where the generators submit vertical supply functions to the System

Operator.
""In a previous report (Willems 2000) also the model of Stoft (1998) has been studied.

Other studies using Cournot competition are Stoft (1997, forthcoming), Borenstein, Bushnell and Stoft (1998),
Borenstein, Bushnell and Knittel (1999), Borenstein and Bushnell (1999), Hogan (1997), Cardell, Hitt and Hogan
(1997).

2By choosing only two nodes we do not catch all effects of the transmission grid. Physically, an electricity flow
can not be directed over a specific line, but distributes itself over all lines of the grid proportional to the admittance
of the lines. Electricity is thus using all lines at the same time. This effect is called 'loop flow’. To study loop
flow, we need a grid with at least three nodes, and three transmission lines. It is not yet clear if loop flow will

fundamentally change the market power of the generators.

Also the location of generators and consumers has a great impact on the outcome of the game. (See appendix A.)



Consumers are price takers with a linear inverse demand function 6(q)

0(q) =a—q, (1)

which represents their willingness to pay (WTP) for electricity. This WTP covers delivered elec-
tricity, i.e. it includes transmission costs.

An arbitrary generator is presented by the letter i and let —i denote the other generator.
The output g; of each generator is not bounded by technical limitations of their generation plants

(i € RT). Each generator has a constant marginal cost ¢;. The profit 7 of firm i equals

Ty =74 — ¢ 4, (2)

where v is the net price that the generators receive for their electricity. It is the price at node N.
A single transmission line with capacity k connects city N with city S. By assumption trans-

mission costs and transmission losses are zero. All electricity generated is thus consumed:

q= Z% (3)

As transmission capacity is limited by technical constraints, it can become scarce, and have an
opportunity cost. The transmission price p to transport electricity from N to S is then not necessary
Zero.

The net price that the generators receive (7y) is the consumers price  minus the transmission

price p:
y=0-p (4)

Defining the ’competitiveness’ of a generator as'3:

di=a— ¢ (5)
and substituting eq. 4 his profit m; becomes

i = (di —p—q) G- (6)

3.2 Infinite Transmission Capacity

When the transmission capacity is infinite, it can not influence the outcome and transmission price

p will be zero. In a Cournot game, each firm has one decision variable: the quantity ¢; produced.

13 A competitive firm has a low marginal cost ¢;. For a monopolist d; can be interpreted in two different ways:
(1) It is the maximal output that the monopolist can generate without making losses. (2) It is twice the monopoly

output of the firm.



Each player maximizes his profit 7; taking the output ¢_; of the other player as given:

max 7;(Qi; q—; 7
inR}‘{" z(qz q z) ( )

The firms have the following reaction function:

o) = max { 2510 ©)

The Nash-equilibrium is the intersection of the two reaction functions. The equilibrium falls apart

in three distinct types:

0 if el0,3]
g=q 2= i e (1,2) 9)
d

& if fLe2,09

e When ddi -

< %, firm 7 has such a big cost disadvantage that it chooses not to produce.

e When % < ddfi < 2, the marginal costs of the firms are comparable, and we get the "pure’

duopoly outcome.

e When 2 < d—d_‘Li, firm ¢ is so competitive that when it produces the monopoly output %'L the

resulting price is lower than the marginal costs of firm —¢. Firm ¢ is a de-facto monopolist.

The solution type thus depends upon the relative competitiveness ( ddji ) of the two firms. Figure

1 represents these different types in the space of the cost parameter d= (di,d_;).

The profit w; associated with this equilibrium is:

. d;
0 lf E S [07 %]

mp={ Wtd)@dd) g g (1) (10)
% if dd_ii € [2, 00

The Cournot game with infinite transmission capacity is our reference outcome, we will refer to it

as the 'normal’ game.

3.3 Finite Transmission Capacity

When the transmission line has a finite capacity, the transmission capacity may become scarce i.e.
demand for transmission may exceed its supply. Allocation of this capacity thus becomes crucial.

The Cournot game with transmission constraint is defined by the vector of parameters [d;,d_;, k| .
It is convenient to normalize this games by dividing quantities and prices by k, and profit by k2.
We will denote the normalized variables by capital letters. The normalized transmission capacity

is thus equal to one (K = 1).



d; d;=2d
Monopoly
of firm -i
E<i }< d' <2
2 d, 2 d,
Duopoly
d| =2 CI—i
Monopoly d ,
of firm i d,
d

Figure 1: Representation of the different outcomes in the parameter space {(d;,d_;)} . Firms with a large
cost advantage obtain a de-facto monopoly. When the relative cost differences are small, both

firms produce, and we obtain the duopoly outcome.

We already made a first classification of the Cournot game: by distinguishing the pure duopoly,
and the de facto monopolist (See equation 9). We make a second classification between games
where the normal outcome is physical feasible, (the unconstrained games) and where not (con-

strained games)'t:

e When the transmission capacity k, and the production costs c; are large, and the demand
intercept a is small, (D; = 7% is small) the normal outcome with infinite transmission is

possible. The game is unconstrained.

e When transmission capacity k, and production costs ¢; are small, and demand intercept a is
large, (D; = 7= is large) the normal Cournot equilibrium is physically no longer possible.

The game is constrained.

By combining these two divisions we get 6 different outcomes (See Figure 2). To keep the

derivations simple we will discuss only the duopoly case (shaded area in Figure 2).

!4 The term ’constrained’ is only used to classify the games. It is premature to deduce from this classification the
Nash equilibrium. When the game is unconstrained, the normal equilibrium is feasible. But this does not mean that

it is the equilibrium of the game. This equilibrium depends upon the allocation rules for transmission. (See section

4)



D, /B D.=2D
Constrained
Monopoly
of firm -i
D=2

, Constrained
Monopoly Duopoly

of firm -i

Constrained
Monopoly
of firm i

I
Monopoly a)
of firmi

D.

Figure 2: Classification of the parameter space D. For small D; the game is constrained, for large D, the

game is unconstrained.

Oren’s (1997) model This model illustrates the problems you can expect when the role of the
System Operator is not explicitly incorporated in the description of the game. In Oren’s model,

each generator maximizes his profit function 7;, taking the output of the other player as given.!?

Irbaxﬂi =Qi-9Q)—-Ci-Q; (11)
subject to

Soi<1 (12)

The constraint specifies that total output must be smaller than the transmission capacity. In
his formulation a transmission price is not included and the System Operator is of no importance.
Oren solves these equations for the symmetric duopoly (D; = D_; = Dsym). He argues that
because of symmetry the players choose the same output Q; = Q—; = Qsym. When the game
is not constrained ( Dsym < %) they play the normal Cournot outcome. When the game is
constrained the generators divide the transmission capacity k equally. Each generator thus chooses

the following strategy:

Deym 5 Dy < 2
stm: o 2 (13)

otherwise

= W)

15We will restrict Oren’s model to a case with two players with constant marginal costs and a linear demand

function.

10



The price for the consumers is

In equilibrium the generators restrict their output to the transmission capacity k. Therefore

the equilibrium transmission price is equal to zero
P=0 (15)
Oren states that this conclusion is consistent with the Coase Theorem:

...which supports the argument that in the absence of transaction costs ... bargain-

ing will capture all the congestion rents.

Problems in Oren’s model The equations 11 and 12 do not define a single-stage game in
the classical sense, because the pay-off function II; is not defined on the whole strategy space of
the players. Each player chooses his production @Q; € RT. In a simultaneous game a player does
not know the action taken by the other. Therefore, a player can not be sure that he restricts his
output such that it satisfies equation 12.

The profit-function used by Oren is only defined on the triangle:

{(Qi,Q-) [>2Q: <1} (16)

It is however necessary to define the profit function 1I; upon the whole strategy space RT2. We
have to define the behavior of the System Operator when generators want to use more than the
available capacity.

The conclusion that all rent is captured by the generators is basically due to the fact that the
System Operator is not present in the game. In reality, the System Operator is also a player and
depending upon the specific market structure, the scarcity rent is captured by the generators or
the System Operator. In the next subsection we describe the role of the System Operator. This

allows us to construct a more complete set-up of the game.

3.4 The Role of the System Operator

From now on, we will make a distinction between the actual quantity of electricity produced Q;
and the quantity of electricity a generator would like to produce, his bid B;. A generator is not

allowed to bid more than the available capacity:

0<B; <1 (17)

11



Revelation game We can distinguish two roles for the System Operator: allocating transmission
capacity (setting Q);) and setting transmission prices (setting P). In principle, the price P and
the quantity @); of each generator are set by the System Operator based upon the bids of the
generators. These bids should include price information BY and quantity information B;. The

quantity Q; is allocated using an allocation rule

Qi = Qi(B;,B_;,BY B")) (18)
and the transmission price P using a price rule

P=P(B;,B_;,B? B")) (19)

See Figure 3.A.

[Allocation Rule} [ Price Rule } [Allocation Rule} [Regulated Pric?
Q(B,By) P(B,By) Q(By) P(Q

Figure 3: (A.) Normal revelation game. The generators give price and quantity information to the System
Operator. Using this information the quantities @); are allocated, and the transmission price P
is set. (B.) Exogenous transmission price. Generators bid quantity information to the System

Operator, who allocates the transmission capacity.

In a Cournot game the players have one strategic value, the amount of electricity they want
to produce (B;). Each generator submits only a quantity bid B;, but no price bid BY. Because
no price information is available inside the game, we suppose that the transmission price is set by
the System Operator before the game starts. Transmission price is exogenous to the game, i.e.

generators can not influence this transmission price.
P = Pryog (20)

See Figure 3.B. Once the transmission price is set, the generators supply quantity bids B; to the

System Operator. He will allocate the transmission to the different generators according to an

12



allocation rule:
Qi = Qi(Bi, B_;). (21)

In the remaining of this paper, we study two different allocation rules and two different price
settings. In section 4 the transmission price P is zero and in section 5 the transmission price is

regulated by the System Operator.

4 No Transmission Price

In this section the System Operator sets the transmission price P = 0. We will discuss a model

with unfriendly allocation (a reformulation of Oren, 1997), and one with proportional allocation.

The models are solved for the pure duopoly game (2 > [])D_ii > %)

4.1 Unfriendly Allocation

The System Operator allocates capacity according to the unfriendly allocation rule:

B, if B<1
Qi(Bi, B_;) = (22)
0 otherwise

where B = > B;. When the sum of the bids is smaller than the transmission capacity, generators
receive their bid. However, when demand exceeds the available capacity, the System Operator
forbids the use of the line. We will proof that this game is equivalent to the formulation of Oren.

Generators make the following profit:

I (B;,B_;) if B<1
IL;(Bi, B_i) = (23)
0 otherwise
where I13°(B;, B_;) is the profit of the normal game.!®
Reaction Function FEach generator restricts its output in order not to break the transmission
constraint because this gives him zero profit. Generator ¢ will play the normal reaction curve

B°(B_;) as long as B°(B_;) + B_; < 1. Otherwise, he will adjust its bid in order not to break

the constraint B;(B_;) =1 — B_;. The reaction function becomes thus:

. if B_; > D; 0
if B_i S 2 — l)Z

Bi(B_;) = if B_; < D; 2P (24)
itB ;>2-D; 1-B

The 'normal’ game is the game with infinite transmission capacity. The profit of the normal game is
0 if BLy > D;

II{°(B;i, B_;) = (D; — B) B;. The reaction function of generator 7 is B{°(B_;) = DB

13



Figure 4 and Figure 5 show the reaction functions for two different set of parameters D.

Reaction Functio|
Firm -i

0.8

Reaction Functiofp
Firm i

0.6

Transmission
Constraint

0.4

0.2

Figure 4: Case A: When the transmission capacity is big (Small D; and D_;) the normal Cournot Equi-
librium is the equilibrium of the game. (Shown: D; =0.84; D_; =1.12)

Nash equilibrium The intersection of both reaction curves gives the set of Nash equilibria. We

obtain the following types of Nash equilibria:

e For the unconstrained duopoly (D; + D_; < 3) the players will play the 'normal’ Cournot

outcome. (See equation 9.)

2D; — D_;
Bj= ————— (25)
3
This outcome is represented in Figure 4
e For the constrained duopoly (D; + D_; > 3) the following set is a Nash equilibrium:
{(Bi,B,z-) S Bi=1andVi:B; < 2l } (26)

The first condition specifies that all transmission is used. The second condition states that

each equilibrium must lie below the two normal reaction functions. (See Figure 5.)

The type of solution of this game in function of Dis represented in Figure 6. For D € A the

normal equilibrium is played; in region B a line of equilibria exists.

14



0.8

0.6

Reaction Functio|

0.4 Firm -i
Reaction Function
Firm i
o2l |~~~ =~
Transmission
Constraint Bi
0 0.2 0.4 0.6 0.8 1

Figure 5: Case B: When the transmission capacity is small (big D; and D_;) a line of equilibria is present
(the line A-B). Point C represents the normal Cournot equilibrium, which would have been

played with a larger transmission capacity. (Shown: D; = 1.60; D_; = 1.88)

Proposition 1 The equilibrium concept of Oren (defined by equations 11 and 12) implicitly as-
sumes a System Operator who sets the transmission price P = 0, and uses the unfriendly allocation

rule. (equation 22).
The Nash equilibrium we found in this game can be specified as:
B = arg mox TL(B, B) 27)

where the profit function II;(B;, B_;) is defined by equation 23. Oren’s equilibrium concept (equa-

tions 11 and 12) can be written as:

Hok . . *K
By =mg_max IL(B,BY) (28)

Because all equilibria of equation 27 satisfy:
Bf+B*, <1 (29)

they must also be a solution of equation 28. Since both concepts have the same equilibrium, they

are equivalent formulations. [

Note 1 Oren incorrectly assumes that the equilibrium is symmetric when the generators have the

same costs and finds only one solution.

15



Figure 6: In region A, the normal Cournot outcome is the only Nash equilibrium. In region B a line of
Nash Equilibria is present. The points in the figure refere to the parameters in figures 4 and 5.

(Since the figure is symmetrical arround the 45 degrees line, only half of the figure is presented.)

4.2 Proportional Allocation

The unfriendly allocation rule of the previous subsection is not realistic, since it is political not
implementable.!” Therefore, we look for an alternative model.

Consider the proportional allocation rule:

itB<1

Qi(B;,B_;) = (30)

B;
% otherwise

where B = >  B;. Each generator receives his bid when there is sufficient transmission capacity.
When demand exceeds the capacity available, the System Operator divides the quantity propor-

tionally to the bids. Transmission price is still equal to zero (P = 0).

"Furthermore, if we would model the strategic behavior of the System Operator, forbidding the grid access would

not be a credible threat as it would decrease welfare.

16



This gives each generator the following profit:
B; if B<1
IL;(B;,B_;) = (31)
(D; —1)- 2 otherwise

Reaction function Basically, each firm decides to break (b) or not to break (nb) the constraint.

We will derive the optimal bids (B?* and B?) in both cases. The firm will choose to break or not

to break whichever gives him the highest profit.

e Not Breaking If firm ¢ chooses not to break (B; < 1 — B_;) he maximizes II; by playing

if B.; > D, 0
X itB ;,<2-D; DB
B™(B_;) = if B.; < D; P (32)
iftB_;>2—-D; 1-B_;
and receives the following profit:
. if B.; > D, 0
b itB_;<2-D;
" (B-;) = if B_; <D, 1(D; — B;)? (33)
itB_;>2-D; (D;—1)-(1-B_;)
e Breaking  If he chooses to break he maximizes his profit by playing BZI? (B_;) =1 and he
receives the following profit:
D;—1
m(B) == 4
HB) = (34

A generator chooses breaking when this gives him the largest profit.
BY(B-;) if 1Y(B;) > II7"(B;) (35)

Bi(B_;) =
Br(B_;) otherwise

The reaction function becomes (See appendix)

if B_; > D; 0
if B_; < B, DieB
Bi(B-;) = if B.; < D; 2P (36)
if B, > B, 1

with B(D;) the critical value for B_; (See Figure 7).

it Di>1 3 (Dit+1-/D?+6Di—7)
BT, = (37)

if D; <1 1

17



B B.cr

0.51

2.5 3

Figure 7: Critical values B{"(D;) as function of the parameter D;. For D; > 2 the generator will always

break. If D; < 1 the generator will never break.

. . D;—B°", . .
We know that B lies upon the normal reaction curve B; = —5—. Using equation 37 and

eliminating D; we get:
BB, +B;+ B, =1 (38)

This equation tells us the size of B; on the normal reaction curve when B¢, reaches his critical
value. This relation is symmetric in B; and B_; and does not depend upon D; and D_;. It is
a locus of critical points in the g—space. (See also Figures 8, 9 and 10.) The reaction functions

jump’ from breaking to non breaking when they cross this curve.

Reaction Function
Firm -i

Reaction Function
Firm i

Locus of
Critical points

Transmission
Constraint

Figure 8: Case A: For large transmission capacities the normal Cournot outomce is the only equilibrium.

(Shown: D; =0.84; D_; = 1.12)
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Figure 9: Case B: For intermediate capacities two equilibria are present: the normal cournot equilibrium,

and the (break,break) equilibrium (Shown: D; = 1.04; D_; = 1.32).

Nash Equilibrium The Nash equilibrium can be found as the intersection of the two reaction
functions. In the appendix we derive the number and the type of the equilibria as function of the
parameter D. The results are summarized in Figure 11. In region A (large transmission capacity)
the normal Cournot equilibrium is the only equilibrium. (See Figure 8.) In region B (intermediate
transmission capacity) two equilibria exists: the normal Cournot equilibrium and the (break,
break) equilibrium where both players bid maximal capacity. (See Figure 9.) In region C' (small

transmission capacity) only the (break, break) equilibrium exists. (See Figure 10.)

Welfare analysis We will compare the welfare of the unfriendly allocation method, with the
proportional allocation method.

For region A of Figure 11 both allocation rules are equally good, as they both result into the
same equilibrium (the normal Cournot outcome). For region C3 a line of equilibria exists under
the unfriendly allocation rule. Dependent on which equilibrium the generators coordinate, welfare
can be higher or lower.

In the regions C1, Cy, and B the generators can play the (break,break) equilibrium under the
proportional allocation, but they would play the normal Cournot equilibrium under the unfriendly

allocation method.'® This has an double effect on welfare: With proportional allocation, the

'®Under the proportional allocation players can also co-ordinate on the normal Cournot outcome in region B, in

that case proportional and unfriendly allocation are equally good.
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Figure 10: Case C: For small transmission capacities (break, break) is the only equilibrium. See point D.
The normal Cournot outcome (point C) is technically feasible, but it is not an equilibrium.

(Shown: D; =1.22; D_; = 1.50)

generators end up producing more because they have an incentive to bid higher. As a consequence
the electricity price is lower and consumers’ surplus is larger. On the other hand, the production of
electricity is less efficient as in the normal Cournot outcome the low cost generator produces more
than the high cost generator, but produce the same quantity in the (break,break) equilibrium.
The net welfare effect depends thus on the cost difference between the two generators. If the
two generators have similar costs (Z_j close to the 45° line) the loss of efficiency in production
is small. On the contrary, when the production costs of the two generators are very different,
efficiency losses are high. In the Appendix we show that in region B; and in C} the proportional

allocation is preferred, whereas in Cy and Bs the unfriendly allocation outperforms..

5 Regulated Transmission Price

In the previous section we looked at games where the transmission price P was set equal to zero.
In this section we will look for an alternative assumption for the transmission price.
How will an exogenous transmission price influence the outcome of the game? In the presence

of a transmission price, the profit of the generators becomes:
I, =(D; — P—Q) Q. (39)
The impact of the transmission price P is that of an apparent increase of the marginal cost of
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2-5 l

Figure 11: In region A, the normal Cournot game is the only Nash equilibrium. In region B both the
normal, and the (break, break) equilibrium are possible. In region C only (break, break) is
an equilibrium. (Since the figure is symmetrical arround the 45 degrees line, only half of the

figure is presented.) The points in the figure refere to the examples in figures 8,9 and 10.

each generator. That is, the game with competitiveness parameter D and transmission price P
is identical with a game with cost parameter D* = D — (P, P) without transmission price.!?
Therefore, we can apply the theory of the previous section on D*.

Still we did not define how we set the transmission price P. We choose the lowest possible

transmission price P for which the generators play the normal Cournot equilibrium.

In the next two subsections we discuss the unfriendly and the proportional allocation rules.

YTn the ﬁ-space, the vector D shifts parallel with the 45° line, because the generators are charged the same
transmission price. (This is exactly what hapened in the examples of the previous section. The different figures can

thus also represent games with the same competitiveness parameter D but with different transmission prices P.)
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5.1 Unfriendly Allocation
Let us return to the unfriendly allocation rule:

B, if B<1
Qi(Bi, B_;) = (40)
0 otherwise

The solution of this game with zero transmission price is presented in Figure 12. In region A
we have one unique equilibrium: the normal Cournot outcome, in region B we find an interval of
Nash equilibria.

Assume that we choose the lowest possible transmission price P for which the generators play
the normal Cournot equilibrium. We shift down from an equilibrium D in the region B until we
reach region A (See equilibrium D* in the figure). The size of the horizontal and the vertical shift

is equal to the transmission price P.

3
D; I'
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Figure 12: Equilibrium type of the game with the unfriendly System Operator. The competitiveness
parameter of the generators is D. The transmission price P is increased until the normal

Cournot game becomes possible. The apparent competitiveness becomes D,
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Numerically, we look for a P such that D} +D*, = 3.20 The transmission price than becomes:

p= %(Di +D_i—3) (41)

And in equilibrium the generators bid:

2D - D*,
Bj=—"—"i (42)
3
Using the definition of D} and eliminating P we get:
1
B; = 3 (D; —D_; +1) (43)

Link with the model of Smeers and Wei 1997. In this subsection we find the same equi-
librium as Smeers and Wei (1997). However, they use a different formulation. In their model the
generators are 'ignorant’ and do not realize that there is a transmission constraint.

We will sketch the model of Smeers and Wei. Each generator maximizes his profit, taking the

output of the other generator ()_; and the transmission price P as given

Each firm then has a reaction function Q; = Q;(D;, P,Q_;). The intersection of these reaction
functions is the Nash equilibrium: Q¥ (D;, D_;, P). The transmission price is set by the System

Operator such that the output chosen by these ’ignorant’ generators is equal to the constraint:

> Qi(Di, D, P)=1 (45)

As the generators do not break the constraint, the System Operator does not need an allocation

rule.

Proposition 2 When the System Operator sets the transmission price optimal such that the trans-
mission constraint is not broken, the model with ignorant generators, who do not recognize this

constraint, is equivalent to the model with rational generators and an unfriendly allocation rule.
A proof is trivial and would follow the same lines as proposition 1. [

The formulation of Smeers and Wei of the equilibrium relies on the assumption of the generators
behaving ’ignorant’. Their equilibrium concept is not the Nash equilibrium of a game. By adding

the unfriendly allocation rule their concept becomes the Nash equilibrium of a game.

20We assume that with the optimal transmission price P, we will not arrive in the de-facto monopoly case.
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5.2 Proportional allocation

We repeat the same procedure for the proportional allocation rule. We increase the transmission
price until the normal Nash equilibrium is feasible. The equilibrium shifts from D to the point
D*. See figure 13.

The transmission price P is equal to (See appendix):

P= % (DZ-+DZ-+6—3\/(DZ- —DZ-)2+8> (46)

Special Case: When the cost difference between the generators is small (D; ~ D_;) the
transmission price can be approximated by P = —1.24 + % + %(Di — D_;)? (Taylor Expan-

sion).

Figure 13: Equilibrium type of the game with proportional allocation. The competitiveness parameter
of the generators is D. The transmission price P is increased until the normal Cournot game

becomes possible. The apparent competitiveness is then D,

Comparing the two models with regulated transmission prices. In equilibrium, the

transmission price is higher with proportional allocation than with unfriendly allocation. Under
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proportional allocation the transmission price equals

P~ —-124+ M + i(l)z — l)_z')2 (47)
2 16
and with the unfriendly allocation rule
D;+D_;
P=-15+ +T (48)

A consequence of this higher transmission price is that in equilibrium, we do not use all the
available transmission capacity with the proportional allocation rule. Furthermore, it is easy to

show that welfare is lower under the proportional allocation rule.?!

6 Conclusion

6.1 Conclusions of the paper

This paper models Cournot competition in an electricity market with transmission constraints.

One of the major difficulties in the electricity market is to assure that generators who indepen-
dently decide about their output, will not produce more than the available transmission capacity.
In practice, this problem has been solved by assigning certain decisions to a central authority, the
System Operator. Identifying this structure, we explicitly model the role of the System Operator.
The System Operator rations the transmission capacity available for the generators using two
different instruments. In the long run, he can set the transmission price. In the short run, he can
impose quantity restrictions on the output of the generators using an allocation rule.

By specifying the double role of the System Operator we develop a single framework that can
be applied to the different models found in the literature. In this framework we study a duopoly
of two generators with constant marginal costs. A transmission line with a fixed capacity connects
these generators with consumers, who have a linear demand function. We normalize the game
such that the transmission capacity equals one.

The first model we investigate is Oren (1997). As we do not agree with the assumptions he
makes, we develop an alternative model. This model sheds some light on the controversy whether
the generators receive or not receive all the congestion rent. In the last part of the paper we

impose a regulated transmission price and look how the equilibrium changes.

21 Countrary effects work: with proportional allocation the tax revenue inceases but consumers surplus and pro-
ducers surplus decrease (despite the fact that the production mix becomes more efficient because the low cost firm

produces relatively more).
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Controversy: do the generators receive all congestion rent. Joskow and Tirole (1998)
argue that the transmission price is equal to zero as long as not all the capacity is used by
the generators.?? Building upon the models of Stoft (1997, 1999) and Oren (1997), where the
generators restrict their output to the available capacity, they conclude that the transmission
price is zero and that generators receive all the scarcity rent. We show that these results are due

to the specific and implausible role that Oren and Stoft assign to the System Operator.

1. It is not true that the generators will always restrict their generation to the available trans-
mission capacity. In a variation of Oren’s model, the System Operator sets transmission
price equal to zero and uses a proportional allocation rule. In this game, the generators do

not restrict their bids for the use of the transmission line.

2. In our framework we disentangle the price setting and the allocation of the transmission
capacity. As a consequence, there is no direct relation between the use of transmission
capacity and the resulting transmission price. Even when the whole capacity is used, the

transmission price can be zero.

3. We reject the conclusion that the congestion rent is always captured by the generators. In
our framework this is only valid when the System Operator sets a transmission price equal

to zero.

6.2 Further Research

We see three major topics for further research: endogenizing the transmission price, the study of

the decentralized market, and the investigation of the optimal allocation and price rule.

Price Setting The transmission prices are exogenous to our model. Further research should try
to endogenize this transmission price in the model.

A first option is to consider a repeated game where the System Operator and the generators
interact regularly. The System Operator learns the costs of the generators by observing their
actions in the past. When the full capacity is demanded by the generators, they signal that the
transmission capacity is scarce. The System Operator will then increase the transmission prices
in the next round.

The generators will signal when the benefit of using more of the transmission line, exceeds the

disadvantage of a higher future transmission price. Under certain conditions it is possible that

22 Joslow and Tirole study the value of financial transmission rights. The value of such a right is proportional to

the transmission price.
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the players are not willing to signal the scarcity of the line. In that case the transmission price is
zero, and the generators receive all the scarcity rent.

An interesting question is whether the proportional allocation rule and the unfriendly allocation
rule would give a similar result. Under the unfriendly allocation rule the generators get only a small
benefit when they signal. Transmission prices could become very low. Under the proportional
allocation rule a player gets a larger benefit when he signals. Transmission prices can become
higher.

Another option is to include price bids. A realistic model of the electricity market should in-
clude both price and quantity bids by the players. The System Operator then sets the transmission

price based upon this price and quantity bids.

Decentralized Market For this issue, we would consider a three stage game. In the first stage,
players submit to the System Operator how much they would like to produce. In the second stage,
the System Operator allocates the available capacity to the generators, using an allocation rule.
In the centralized market, the generators are obliged to use the quantity they obtained from the
System Operator in the final stage.

In a decentralized market, the generators decide in the final stage how much they will use of
the transmission capacity they received, but they have to pay the transmission price for the full

quantity they obtained.

Optimal Rules A complete welfare analysis of the different allocation rules was not conducted
in this paper, but remains an option for further research. Which rule outperforms another, depends
upon the cost parameters of the two firms. In order to formulate a policy recommendation, we
need to know the distribution of the cost structure of the firms.

We do not use the theory of mechanism design to define the optimal allocation rule that

maximizes welfare. This as well, could be an area of further research.

A Externalities in electricity networks.

Transmission constraints influence the market power in two different ways: by splitting up the
market into two sub markets, and by the creation of competition for a scarce transmission capacity.
(See also Footnote 12). These two effects can be recognized in a model with only one transmission

line and two generators.

Splitting the market When we place the generators on different sides of the line, transmission

of electricity creates a positive externality for the generators. A generator transporting electricity,
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increases the available capacity for the other generator, because only the net transmission flow
determines if a line is congested or not.?3 This game has been studied by Stoft (1997) using
Cournot behavior. He demonstrates that for small transmission capacities, generators will not
enter the other market, as they would "open the door” for their competitor. For intermediate
capacities generators play a mixed strategy, and for large transmission capacities the transmission

constraint does not influence the market equilibrium and they play the normal Cournot outcome.

Competition of scarce capacity When we place the generators on the same side of the line
they are rivals for the transmission capacity and for the electricity market. When a generator uses
the transmission line, he creates a negative externality because he decreases the available capacity

for his competitor. This is the setting used in this paper.

B Proofs

In this subsection we discuss some of the longer derivations. First we derive the reaction func-
tion and the Nash equilibrium and the regulated transmission price in a game with proportional
allocation rule. Then we compare the welfare of the (Break, Break) equilibrium with the normal
Cournot equilibrium.
B.1 Reaction function
The generator will play non-breaking when it is profitable for him:

F(B;) =117°(B ;) —11)(B;) > 0.

with F'(B_;) the following function defined on three regions R, Ro, and Rs:

iFS if (Di,B;)€R
F(B-;) = 1(Di — B_i)* + £ if (D, B_;) € Ry (49)
(Di—=1)- (1= B_y)? + 12 if (D, B_;) € Ry
with Ry, Ry, R3 C RT x [0,1]
Ry = {(Di,B_;)| B.i<2—D;and B_; > D;} (50)
Ry = {(Dj,B-;)| B_i <2—D; and B_; < D;} (51)
Ry = {(D;,B_i)|B_;>2-D;} (52)

3 Two electricity flows in opposite directions cancel each other out. Physically only the net flow of electricity is
transported. Suppose for example that a generator would like to send 100 MW from A to B, another generator 50
MW from B to A and that the capacity of the line is 70 MW. As the net electricity flow is only 50 MW from A to

B, this flow is physical feasible.
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Solving for the sign of F(B_;; D;) the following reaction function results:

BM(B_;) for (D;;B_;) € By
B®(B_;) if B; < B3,
BZ'(B_Z') = for (DZ’,B_Z') € Ry (53)
BYB_;) ifB_;, > B3,

BY(B_;)  for (D;,B_;) € R

with?4:

1
Biizi(DH—l—\/D?#—GDi—?) (54)

This is equivalent with equation 36 and 37.

B.2 Nash Equilibrium

As a first step we search Nash Equilibria where one of the players breaks. Suppose that player —¢
breaks (B_; = 1). This is a Nash Equilibrium if B_;(B;(1)) = 1. The optimal reaction of player ¢
to B,¢ =1:

1 ifD;>1

Bi(1) = (55)
0 ifD; <1

The optimal action of player —i to this reaction is:

1 if D; >land D_; > 1
0 ifD;>1land D_; <1
1 if D; <land D_; > 2

PioPoiif Dy < land D_; <2

Define 57 = {5 |D; > 1 and D_; > 1} .Observing equation 56 and noting that we study the

—1i

pure monopoly case (% < % < 2) we find the following Corollaries:
Corollary 3 When D € S; playing B* = (1,1) 4s a Nash Equilibrium..
Corollary 4 When (B}, B*,) is a Nash Equilibrium and Bf =1 = D € S and B* = (1,1).

The last corollary implies that for all remaining Nash Equilibria both players do not break
(B} < B{" and B*, < B;). But as long as they do not break, the reactions functions of the propor-

tional game and the normal Cournot game are the same. It is thus sufficient to inspect whether the

*The function +(D; — B—i)? + £ has three roots: BY; =2~ Dy, B2 = 4 (D;+ 1+ /D7 +6D; - 7) and
B, =1 (Di +1-/D2+6D; — 7) .Only the third root is relevant (i.e. (D, B%;) € Ra) .
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2D,—D_; 2D_;—D; )

intersection of the reaction functions of the normal Cournot game (B}, B*;) = (=—5—, —=;

satisfies B} < B{" and B} < B{".

These last two inequalities can be combined to (See eq. 38):
B/B*;+ B +B; <1 (57)
Substituting D; and D_; for B and B*,, we can conclude that for all parameters D € S, with
Sy = {5 5D:D_; — 2(D? + D2 ) +3(Di+D_;) =9 < 0} (58)

that the equilibrium of the normal Cournot game is an equilibrium of the game with proportional
allocation.

Summarizing we find three different regions:
e Region A = 51\S5 : with the normal Cournot equilibrium,
e Region B = 51NY : with both normal Cournot outcome and the (Break,Break) equilibrium,

e and region C' = S3\ S : with the (Break,Break) equilibrium.

B.3 Exogenous Transmission price.

The transmission price P is set such that (See Equation 58 ):
5DD*, —2(Df* + D*%) + 3(Df + D*;) —9=0 (59)
Substituting the definition of D}, we find that P is the root of:
P?—(D_;+D;+6)P—2(D?, + D?) +5D_;D; + 3(D; + D_;) — 9 (60)

and thus is equal to:

P= % (D¢+D¢+6—3\/(Di —D¢)2+8) (61)

B.4 Welfare Comparison

We compare the welfare of the normal Cournot Equilibrium with the (Break,Break) equilibrium
Total welfare (w) is the sum of consumers surplus %qQ and producers surplus (a—q)q—ciqi — c—iq—;.

Normalized welfare ( W = 73) becomes:

1
W =DQi+ D Q- — §Q2 (62)
Total welfare in the normal Cournot equilibrium (Q; = % and Q) _; = %) is thus:
1
W"™(D;,D_;) = = (11D} — 14D;D_; + 11D? ] (63)
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and in the proportional game (Q; = Q_; = %)

WP(Di; D) = %(D1 Dy —1) (64)

In the set S = {5 \(W™(Dy, D_;) —WP(D;s, D_;) > 0} the normal Cournot outcome gives a
higher welfare than the proportional allocation. The regions By By, C; and Cy drawn in Figure

11 are defined as By = BN S3; C1 = C'N S3; By = B\S3 and Cy = C\S5.
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