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Abstract

On-street urban parking spaces are typically regulated by either a me-
ter fee or a time restriction. This paper shows that, when the off-street
parking market is perfectly competitive, meter fees are more efficient than
time restrictions. When on-street parking is free, albeit subject to a time
restriction, too many drivers choose to engage in socially wasteful search-
ing for on-street spaces. In contrast, with a meter fee, the relative benefit
of parking on-street is reduced, and total search costs can be minimised.
A linear meter fee structure is shown to be optimal.

A simple policy prescription is also proposed. Set on-street meter
fees equal to off-street parking fees. Finally, a simple numerical model
calibrated to central London suggests that the use of optimal meter fees
increases parking welfare by around 5% over an optimal time restriction.

1 Introduction

Politicians may prefer to regulate a market via a quantity control rather than
a price control. Under a quantity control, a consumer can use the market for
free, while under price regulation, she must pay a tax. In seeking election,
politicians may be sensitive to the danger that a tax is perceived by the voter as
a resource cost rather than a transfer. This choice of instrument is relevant to the
urban parking market. Urban authorities must choose between regulation of on-
street space via prices (a meter fee) or via quantity controls (a time restriction).
Standard theory suggests that the choice of instrument (in the presence of lump-
sum taxes and perfect information on benefit and cost curves) does not matter.
Politicians may then opt for time restrictions in the hope of greater popularity.

We show that the choice of instrument in the parking market does matter.
Furthermore, residents are better off if the politician adopts meter fees (and

*Earlier versions of this paper have been presented at the workshop *The politics of pricing’,
VATT, Helsinki, 19-20t* August 1999, and at a doctoral workshop on public economics at
CORE, Université Catholique de Louvain, 237¢ May 2000. We would like to thank both sets
of participants for useful comments.



hands back the revenues) rather than time restrictions. Consider drivers arriving
in the city centre at random during the peak period. Each driver must choose
between searching for an on-street parking spot or driving directly to a privately-
operated off-street parking complex. If on-street parking is free, albeit subject
to a time restriction, whilst the off-street complex is subject to a fee, many
drivers will engage in socially-wasteful searching activities for an on-street space.
In contrast, an on-street meter fee reduces the relative attraction of on-street
parking and results in smaller total search costs.

This simple point has not been made in the literature. Indeed, it is surpris-
ing how few papers have been written on parking, especially given the myriad
of differing policies adopted by different urban authorities over time. Some au-
thors concentrate on the use of parking pricing as a means to charge for road
congestion externalities. Glazer and Niskanen [8] show that raising parking
prices, by deterring trips to the city centre, may just encourage more through-
traffic. Calthrop, Proost and Van Dender [5] use a numerical simulation model of
Brussels to show that second-best pricing of all parking spaces produces higher
welfare gains than a single-ring cordon scheme. Verhoef, Nijkamp and Rietveld
[11] make a general case for using parking fees rather than supply constraints
to internalize the external costs of road transport.

We are aware of only three papers that investigate the first-best regulation of
on-street parking. Vickrey [12] makes the case, in a non-formal paper, for peak-
load pricing of on-street space. He suggests a rule in which the price of remaining
on-street spots is a function of the number of remaining unused spaces. Arnott,
de Palma, and Lindsey [1] demonstrate that a spatially differentiated parking
fee can reduce total travel costs in a bottleneck congestion model.

A recent paper by Arnott and Rowse [2] adopts an explicit representation
of the stochasticity of vacant on-street parking spaces. Drivers decide upon
which trips to make, whether to walk or drive, and, if driving, the distance
from their destination at which to start searching for a vacant space. The
model does not consider the off-street market nor the use of time restrictions.
The central policy recommendation emerging from the model is that per time
unit parking fees should be set equal to the value of the parking congestion
externality: by parking for an additional unit of time, a driver reduces the
mean density of vacant spaces and imposes additional travel time costs on all
other drivers. However, the model exhibits multiple stable equilibria, which can
be Pareto-ranked, but prevent the policy maker from being able to achieve the
globally superior equilibrium with certainty. Moreover, the authors suggest that
this result stems from the inherent complexity induced from uncertainty in the
parking market.

We adopt a much simpler reduced-form representation of search costs. Al-
though this lacks some of the sophistication captured by Arnott and Rowse, it
contains the same basic mechanism: increasing on-street fees reduces the av-
erage duration of stay, thus increasing the mean density of vacant spaces and
reducing the undesirable travel costs from searching. Furthermore, we integrate
the private off-street market into our model, which alters the welfare message
for efficient on-street pricing policy. We also analyse a commonly-used alter-



native to meter fees, namely time restrictions. When the ofl-street market is
competitive, we show that on-street meter fees are more efficient than time re-
strictions. We also suggest a simple policy prescription: set meter fees equal to
the off-street price.

Section 2 introduces our simple model of parking. Section 3 derives the cen-
tralized solution, while section 5 shows that meter fees can be used to perfectly
decentralize the optimal allocation. Time restrictions, on the other hand, fail
to do so. The analytical results of the paper are highlighted with a numerical
example based on published data for central London, introduced in section 4.
Section 6 concludes and emphasizes some directions of further work.

2 A simple model of urban parking

A fixed number, IV, of identical risk-neutral drivers wish to park during the peak
period in an urban centre. Each driver has a demand curve, or willingness-to-
pay, for parking time given by a — (¢, where ¢ denotes the quantity of time
consumed. Parking spaces are provided on two separate markets. A fixed num-
ber of spaces are present on-street (market x). The fixed supply of peak-period
hours of on-street parking is given by @Q,. Government regulates these spaces
via either a per-time-unit meter fee or a time restriction. We assume perfect
costless enforcement of these regulations: we comment on this assumption fur-
ther in section 6. The opportunity cost of the on-street spots is assumed to be
zero. In contrast, the private market provides off-street spaces (market ) under
conditions of perfect competition at a per-time unit cost of C'. Finally, it is
assumed that consumers are indifferent between parking on- or off-street?.

The price for either market per time unit parked is denoted by p; (¢ = z,¥),
and the resulting time consumed is given by ;(p;) = (o —p;) /8. A basic
rationing problem arises if the fixed on-street supply is insuflicient to meet
demand (at a zero price): Nt,(0) = Na/8 > Q.

In addition to choosing how long to park, each driver must choose whether
to search for a space on the on-street market or use the off-street market. The
assumed spatial layout of the problem is shown in Figure 1 . A driver approaches
the urban area from point o, and must decide whether to turn left and proceed
towards the on-street parking area x or turn right to the off-street area y. Travel

LOn-street parking spots usually take up road space, and as such have a positive oppor-
tunity cost. However, we argue that some on-street parking spots cannot be converted into
additional road-space in the short term e.g. a small stretch of road between two major junc-
tions. Then the arguments in this paper would hold for those spaces alone. Secondly, even if
all spaces had a positive opportunity cost, similar arguments would hold as long as this was
less than the opportunity cost of off-street land, which seems likely.

21f expected consumer surplus from using either type of market is equal, we assume that
drivers prefer to use the on-street market. This is just a resolution of an inequality and of
no significance in what follows. The model can also be used to examine the case that on
street spots are prefered to off-street or vice-versa. Given identical consumers, this amounts
to adding a fixed cost to the use of one or other market. All expressions below would have to
be altered for this new term.
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Figure 1: The spatial layout

costs from o to x and from o to y are identical and independent of the number
of users i.e. there is no road congestion.

If she decides to proceed directly to the on-street area, x, but fails to find
an available spot, she must return to the off-street area y. In doing so, however,
she incurs a fixed driving cost penalty given by d. This formulation is a reduced
form representation of a more complex spatial model of parking search costs.
The model captures in a simple way an important relationship: better rationing
of the on-street market will reduce the need for socially inefficient search/drive
costs?.

3 Centralized solution

Suppose that government could direct individual drivers to use a particular spot
for a particular length of time (and that there are no other distortions in the
economy). The government’s problem is to maximize social welfare, W, given

3This is also the case in Arnott and Rowse [2] in which the expected cruse distance to find
a space is given by 1/P where P gives the average density of vacant spaces.

However, in addition, consider a driver searching for a vacant space amongst Z spaces
distributed equally at m metres apart. She begins at the off-street facility. Further the road
is circular, so that after searching all Z spaces she returns to the off-street facility. For a
probability p of a particular spot being vacant, the expected search distance is equal to:

Z .
S [— o)t pma
=1

if the driver does not turn back (perhaps due to a one-way system). It can be shown that
for large number of spaces, the expected driving costs falls as the probability of a spot being
vacant rises. This is the relationship that is captured in a reduced form manner via the
parameter d.



by the following function with respect to length of stay and number of users on
each market (N, denotes number of users of the x market):

Max W = Nz/otm(oz—ﬁq)dq—l—(N—Nm)/oty(oz—ﬁq—C)dq (1)

Nm,tmﬂfy
8t Ngt, < Qz (311)
Ny, tg,ty =2 0

where the expressions in brackets after the first two constraints give the re-
spective multipliers. The necessary and sufficient conditions for the solution to
the non-linear programme (1) are given by the standard Kuhn-Tucker condi-
tions?.

The optimal duration of stay on the off-street market, (when demand is
positive), is equal to that induced by charging a per time unit price equal to
the resource cost, C, ie. &, = 0‘760. Assuming N, and t, are positive, the
complementary slackness condition for time parked on the x market, requires

that:

f=5" 2

Substituting this information into the complementary slackness condition
for the number of users of the x market, gives the following conditions:

(=)’ = (a=C)?

26 — Y2 = 0 (3a)
(1 (Qm - Nztz) = 0 (?)b)

Three different solutions exist depending on the relative size of on-street
supply, Q;, the number of individuals, N, and the resource cost of off-street
supply, C.

* Q> NG

In this case, on-street supply is very large and there is no rationing problem.
On-street supply is larger than parking demand at a zero price. The off-street
market is not used. Drivers may park for as long as they wish. This is seen
formally by noticing that y; = 0 from condition 3b, and hence y; > 0 from
condition 3a, and N = N from condition 3c.

4The constraints are linear, thus automatically satisfying constraint qualification. Further,
it is straightforward to show that W (.) is strictly concave and thus satisfies sufficiency.



o N9 < Q. < N§

Under this condition, on-street supply is too small to meet parking demand
at a zero price. However, it is large enough to meet all demand at the efficient
off-street price, C. The optimal solution just divides up the available on-street
supply equally amongst all drivers. No-one uses the off-street market. This
can be seen formally by noticing that when yj > 0, condition 3b implies that
tr = % This can be used with equation 2 to solve for y;, which when used in
condition 3a implies that y; > 0 and N; = N. Condition 3a also shows that
the optimal shadow cost of on-street supply, 7, is smaller than the opportunity
cost of off-street supply, C.

ON%>QI

If on-street supply is relatively small compared to demand, particularly such
that demand at the efficient off-street price cannot be met by on-street demand,
the optimal price for on-street parking equals that off-street: ¢; =t; = ag,
Further, only a fraction of drivers use the on-street market, the rest using the
off-street market. This can be seen to be optimal by assuming that N, < N,
so that y3 = O from condition 3c, which in turn implies from condition 3a

that yi = C, and hence from 2 that ¢} = 2=<. Condition 3b implies that

B
N} = QIEELC < N by assumption.

The third case, we argue, is the most realistic for large metropolitan areas in
Europe. Demand for parking and the resource cost of urban land are relatively
high, while the number of on-street parking spots is relatively low. The data
for central London used in the numerical example supports the attention to the
third case. We assume that this condition holds henceforth.

Consider the intuition for the result under the third case. The optimal length
of stay is equal across both markets and equal to the stay induced by charging
for the resource cost of off-street parking. Consider, instead, the situation in
which drivers using the off-street market parked for the optimal length of time,
t,, whilst on-street parkers are induced to stay for a shorter time. More drivers
can use the on-street spaces than under the optimal allocation. Now allow on-
street parkers to park for a marginally longer period of time, such that one driver
must transfer to the off-street market. Each remaining on-street parker can now
park for a longer period, and hence their welfare increases. Furthermore, the
driver that switches to the off-street market can also park for longer. The other
off-street parkers are unaffected. Social welfare has increased. This reasoning
applies as long as the duration of stay permitted on-street is less than or equal
to that off-street.

Now consider the reverse case. Off-street parkers park for ) units of time.
On-street parkers, however, park for much longer, such that only relatively
few drivers can use the on-street market compared with the optimal allocation.
Consider marginally reducing the length of stay on-street, such that one driver
can transfer from the off-street to the on-street market. The consumer surplus
of the original on-street drivers falls, as each driver parks for a shorter duration.



However, given downward-sloping demand curves, the gain in consumer surplus
to the driver that transfers from the off- to the on-street market is large enough
to outweigh the losses to the original on-street parkers. Social welfare increases.
This continues until on-street parking time is restricted to equal off-street.

We have restricted attention to the third case. The first case seems highly
unrealistic, and, in any event, does not require any policy response. The second
case may be relevant in some smaller urban areas, where low demand combined
with a reasonable on-street supply may require a meter fee to ration all parking
demand to on-street supply. This is the case studied in further detail by Arnott
and Rowse [2]. We comment further on our model results under the second case
in section 6.

4 Numerical Example

The discussion in this paper is illustrated with a simple numerical example,
calibrated to data published on central London. Table 1 gives the base case
values for parameters.

Table 1: base case parameter values

symbol | base case value source
N 60,000 calculated from ®[9]
Q. 10,000%5 drawn from [9] ®and [7]
o 20 assumed
[E] 4 estimated from’ [9]
C £5.15 drawn from °[4]
d £2 assumed”

A few key parameters have no direct empirical counterpart and are thus
assumed, notably the search cost parameter d. Sensitivity analysis of this pa-
rameter value is given below. Note also that the data supports the argument

5Using Figure 2 pp.16, we have estimates of the number of parking acts in central London
per peak and off-peak period. FExcluding the parking at the workplace, we sum combined
parking acts by private cars and company cars. This is equivalent to 57,000 acts during the
hours 0700-1300.

6Table 1 pp.17 reports that there were 11,355 meter spaces in central London in 1989.
Elliot and Wright [5] report in Table 11 an equivalent figure of 14,390. We assume 10,000
spaces. We suspect that there is strong spatial variation in demand and supply within central
London, although this is not reported in these sources. Hence we use a smaller estimate of the
number of spaces and interpret our results as relating to those areas within central London in
which demand is relatively high against supply.

"Figure 5 pp.17 excluding data relating to firm parking. However, no information is pro-
vided on price. Average duration is estimated at 4 hours. We assume a value of 3 equal to 4
such that if no price were charged, a driver would remain 5 hours.

8Table 3 pp.254 for City of London.

9There is some evidence to support the magnitude of this parameter. Axhausen [3] Figure
6 presents evidence from a study in Frankfurt that measured an average search time for an
on-street space on a Saturday at 10.9 minutes. We would expect that the value of time spent
searching for a space is higher than the in-vehicle travel time. If the value of time spent
searching equals 10 pounds per hour, the value of the search for a space is approximately 2
pounds.



made in the previous section in favour of a relatively small on-street supply

(case 3): Qu = 50,000 < NL252 = 222, 750.

5 Decentralized solution

In practice, drivers choose whether to park off-street or attempt to park on-
street. Government can only regulate the market subject to this selection con-
straint. Government typically must choose between one of two instruments:
either a meter fee (m) or a time restriction (r). Under a time restriction, the
driver parks for free, but must leave the spot within a pre-specified amount of
time.

We only consider the case in which the off-street market is operated under
conditions of perfect competition. The zero profit condition therefore implies
that p, = C. We make some further comments about the results under an
imperfectly competitive off-street market in section 6 below.

5.1 Choice of destination and rationing rule

We assume that the probability of getting an on-street spot, p,, is given by a
simple random rationing rule'”:

{ 1 il Np(pe)t,(pe) < Qq

. .
N otherwise

(4)

P2(Pz) =

where N (p;) gives the number of drivers attempting to park on the z
market ("go Left’), later to be derived as a function of the price on-street. This
particular rationing rule is most relevant to the situation in which each driver
arrives at random over the peak period. Drivers cannot increase their probability
of getting a spot by arriving earlier or later, or by using information on parking
availability. The chosen representation captures in a simple way a key concern:
the probability of a driver finding a spot is related to the length of time drivers
would like to park for''. If per time unit prices are low, and drivers park for
a relatively long period, the chance of any randomly arriving driver finding a

L0This rule is referred to as a ’proportional-rationing rule’ in Tirole [10] pp.213 or, when
used to compute the expected demand curve, as a 'Beckmann-contingent’ demand curve by
Davidson and Deneckere [6].

11 The representation is also consistent with stochastic queueing theory. The expected wait-
ing time to gain entrance to a single server facility is given in a M/D/1 stochastic queueing
model by:

— 22
21— Ap)
where A denotes the arrival rate. It is straightforward to show that the expected queue

time rises as the length of stay ¢ rises. See Glazer and Niskanen [8] section 6 for a numerical
example.



vacant on-street space is small. This representation is not suited to all types of
parking markets - private workplace parking is often reserved, for instance.

Figure 2 illustrates the probability rule in the base case. The vertical axis
shows price on the x market, p,, while the horizontal axis gives the number
of drivers attempting to park on-street, Ni. The shaded area shows (p;, VL)
combinations which result in insufficient demand to meet on-street supply, and
the probability of finding a vacant spot equals one. The non-shaded area to
the right of the dividing line shows (p,,NL) combinations whereby demand
exceeds supply and the probability falls below one. The dividing line plots the
combinations for which demand equals supply: Nz (pz) : N, = 8Qz/ (o — pz).
We have assumed that at N_L(C) < N (the third case from the dicussion in
section 3 above). This implies that if the on-street price equals the off-street
price, demand is greater than on-street supply.

Each driver decides whether to attempt to park on-street ('go left’) or pro-
ceed directly to the off-street market ('go right’). Each driver is aware that
failure to find an on-street spot will require driving back to the off-street mar-
ket and thus incurring a cost d. For risk neutral drivers, the expected consumer
surplus from going left is: p,CS, + [1 — p,][C'S, — d] where p, is defined in
equation (4), and C'S; gives the consumer surplus from parking on market ¢. If
a driver goes right, she gains C'S; for certain.

Consider that on-street parking is free. Given that TL(O) < TL(C) < N,
all drivers choose to go left (N, = N) if:

Q: Qs
W(O)CSI(O) + <1 - Nt*(O)) [CS,(C) —d] > CS,(0)
which holds if:
Q2 2ad
N~ CRa—Cl+25d (5)

Henceforth we assume that this condition holds, which is the case for our
base-case parameter values. It implies that N7,(0) = N. Making this assumption
eases exposition in the paper, but the results of this paper do not depend on this
assumption: indeed, we give a sketch of the outcome when this condition fails
to hold in the section 5 below. We return to the interpretation of this condition
below.

We turn to the effect of meter fees on the choice to go left or right. Consider
a strictly positive meter fee, 0 < py., < C' (note the use of the second subscript
to denote choice of regulatory instrument, j = {m,r}). Given the strict nature
of the inequality constraint in (5), for a small enough increase in price, all drivers
still attempt to park on-street. The increase in price causes each successful driver
to park for a marginally shorter period of time, thus increasing the probability
of finding a vacant on-street space. However, at the same time, the net gain in
consumer surplus from finding a vacant space falls. Given the linear demand
curves, the net effect on desirability of going left is negative - the net gain in
expected consumer surplus from attempting to park on-street falls.



At a large enough meter fee, denoted by pgm, if all drivers go left, the
expected gain in consumer surplus in successfully parking on-street exactly
matches the expected search cost (the penalty cost of driving back to ¥) i.e.
Pz (Pem) CSz (Pem) + [1 — py (Pam)][C'Sy — d] = CS,,. Imagine that all drivers
choose to go left at a price marginally above this level, pym = Pem +¢ < C.
Some drivers would do better by choosing to go directly to the ofl-street market.
In (Nash) equilibrium, at this price level, only a subset of drivers attempt to
park on-street (Nr.,, < N).

Finally, consider a meter fee equal to the off-street price. The consumer
surplus from parking on- and off-street is identical. In equilibrium, drivers will
not choose left unless the probability of finding an on-street spot equals one.
This gives the condition for the upper bound price, pzm: Npm (Pzm) = Ni(Pzm)-
This is only fulfilled if pz7 = C. If the price on-street is higher than off-street, all
drivers will park directly off-street (go right). Therefore for pym > py, Nom = 0,
and p, = 1.

The number of drivers attempting to park on-street when meter fees are
adopted is therefore either 0, N, or N Lm where:

_ Qo | (0= pam)® = (0= C)* +25d

NLm (pmm)

B 2d (a - pzm)
Hence we can write:
N lf Pz < pm
Niwm(Pam) = Npw i pemw=C > e > Dom (6)

0 if Py > pem=C

Figure 2 shows the number of drivers going left under meter fees (a solid
line). At prices less than pg, = £3.09 per hour, all drivers choose to go left:
Nim(Pem) = N = 60,000. When the meter fee matches the off-street price,
Pem = C = £5.15, 22% of drivers choose left and the remainder go right.

The same types of conditions can be derived for the case of time restrictions,
where the price per time unit, p,,, gives the implicit price of the time restriction
i.e. the price at which a driver would choose to park only for the duration of
the time restriction. By assumption, at a zero price, equivalent to no time
restriction, all drivers choose to go left (condition 5). In the case of a small
implicit price (a long time restriction), it is clear that the consumer surplus from
successfully parking on-street is greater than the case of meter fees. The net
benefit to be traded off against the search cost is greater under time restrictions
than meter fees. Given the assumptions made, all drivers continue to choose
left even when the implicit on-street price matches the off-street price: p,,. = C.

Some attention is required in deriving the price at which only a subset of
drivers choose to go left. Assuming that p, < 1, we can derive a price, pgy,
such that Np(pgzr) = N. I on-street supply is relatively small, such that

10
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Figure 2: Number of individuals attempting to park on-street (”go left”)
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Niz(pzr) < Nr(pzr) = N, then the assumption made about the probability
is correct. Using the parallel definition for pz= as in the case of meter fees, gives
pz = v/C[2a — C], we can express the number of drivers choosing left as:

Nt Par < Pzr
Nir(Per) = Ny, il par > par > Par (7)

where:

Qo | (0= par) (0 + par) = (= C)* + 28d
2d (a_pzr)

Np(Par) =

The base case has a relatively small on-street supply. Figure 2 depicts ex-
pression (7) as a dotted line. All drivers choose to attempt to park on-street
at implicit prices up to £12.65 per hour (recall the price off-street is only £5.15
per hour). Even when the time restriction is such that drivers can park only
a fraction of the time that they could park for off-street, drivers are better off
parking for free on-street than paying the charge off-street. A fraction of drivers
choose left and the remainder choose right at implicit prices between £12.65 to
£13.39 per hour. At prices above this level, all drivers go right. Finally, note
that on-street supply being ’relatively small’ translates into the fact that at
price Py, NL(pﬁ) < NL(pﬁ) = N.

Alternatively, on-street supply may be relatively large, such that Nz (Par) >
Np(pgr) = N. In this case, the original assumption that p, < 1 is false at price
Pzr. Consider a price such that N, (pzr) < N. All drivers choose to go left.
This continues until the price that N, (pzr) = N. At this point, the probability
of finding a spot rises to one. All drivers continue to go left until the consumer
surplus on-street exactly matches that off-street at pz=. At this price, all drivers
are indifferent between parking markets. At a price above this level, all drivers
choose to go directly to the off-street market.

Hence:

_ N i pe <pm

The distinction between relatively large and relatively small on-street supply
makes no difference to the basic result of this paper.

Finally, Figure 3 presents the inverse demand curve for on-street parking
time under a meter fee (a solid line) and a time restriction (a dotted line) for
the base case i.e. in which on-street supply is relatively small. On-street supply
is shown as a solid horizontal line.

12
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Figure 3: Inverse demand curve for on-street space

At relatively low on-street prices (pz; < Pam), demand for on-street parking
is identical under time restrictions or meter fees. All drivers choose left. In
the interval pgm = 3.09 < py; < pm = 13.39, however, demand for on-street
parking is greater with a time restriction than a meter fee.

5.2 Optimal meter fees

The optimal meter fee can be read directly from Figure 2. At price pgm = C, the
number of individuals attempting to park on-street is such that the probability
of finding a spot is one. Search-costs are eliminated. This replicates the first-
best solution derived under the centralized solution. It is clear that welfare
cannot be improved upon.

To see the result more formally, social welfare can be written as a function
of pyr, alone.

EWn(pem) = Nom ()02 (1)552() + [1 = p, (I[SSy — dl] + [N — NLm(~)]55;?§)

13
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Figure 4: Social welfare with meter fees

where the social surplus on each market is given by S5;:

(Oé - pmm) (Oé + pmm)
26
—0)?
ss, = -
26
and N, (Dgm) is given by (6) and the probability of getting a spot, p,(pzm),

by (4). Maximizing this non-continuous function with respect to meter fees
results in Proposition 1.

Proposition 1 When the off-street market in perfectly competitive, the optimal
per time unit on-street meter fee, p,,,, s given by py,,, = py = C. Social welfare
is identical to thal with an optimal centralized solulion.

Proof. See Appendix m

We have restricted attention to a linear per time unit on-street fee. However,
given that this fee structure achieves the first-best outcome, it follows that a
non-linear fee can do no better. We can therefore add a corollary:

Corollary 1 When the off-street market is perfectly competitive, the optimal
meter fee is linear.

Figure 4 presents the social welfare function for the numerical example.

Consider a low price for on-street parking p, < pgm = £3.09 < C' = £5.15.
With such a large price difference between the markets, all drivers attempt to
park on-street: the net returns from successfully getting an on-street spot are
sufficient to outweigh the search costs even if all drivers attempt to find a spot.
As in the centralised solution, rationing benefits accrue from raising on-street
prices as long as they are below the level off-street. However, in the presence
of search costs, raising prices has an additional benefit: it reduces the number
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of drivers incurring the ineflicient penalty cost, d, from having to return to the
y market (alternatively, search costs fall). These two types of benefits accrue
until the point p; = pam.

At a price marginally above this level (pm > pm) , only a fraction of drivers
go left. A marginal increase in on-street fee, in addition to the previous two
effects, also induces some extra drivers to proceed directly to the y market rather
than to search on the on-street market. This results in an additional reduction
in total search costs above those captured in the region p; < pzm. .

Once p; > pgm = C, all drivers choose to park directly on the off-street
market. Marginally raising on-street fees has no effect. No-one uses the on-
street space.

5.3 Optimal time restrictions

It is clear from Figure 2 that time restrictions cannot replicate the centralized
solution. When prices are equal to the off-street level, all drivers choose to
attempt to park on-street and total search costs are strictly positive. Time
restrictions can be used to eliminate search costs in the base case by setting
DPzr = Pzr > C. But this price would lead to welfare losses from a badly
rationed market (recall from the centralized solution, that setting prices above
the level C lead to net rationing losses as too many people park for too short
a time on-street). It turns out that the optimal time restriction is set between
the level C' and the price at which search costs are eliminated: the optimal
restriction trades off the welfare losses from higher prices with the reduction in
total search costs.

Social welfare can be written as a function of the implicit price of the time
restriction p,,. alone.

EW(per) = Nir()lpz ()99 () + [1 = p, (IS5, — d] + [N — NLT(~)]55(?/10)

where social surplus, S9;, is defined in equation (9), Nz, (py) in equation
(7) or (8) and p,(ps) in (4). To simplify matters, we make a further assumption
about on-street supply. We assume that:

=

o (la—1* =280
%<( : )

(11)

The restriction is met in the base case'?. It ensures that at the optimal time
restriction, on-street demand is greater than supply. We stress, however, that
the main findings of this paper hold as long as QNi < % (see discussion below

12 B ([e—C12—28b)
S =083 < 5 = 3.57.
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Figure 5: Social welfare under time restrictions and meter fees

at end of this section). The optimal level of time restriction is derived in the
following lemma.

Lemma 1 Given a perfectly competitive off-street parking market, and con-
dition (11), the optimal implicit price of a time restriction, pk., is given by

[ :a—g/(a—0)2—26d>p;;:0,
Proof See Appendix.

Figure 5 presents the social welfare function for time restrictions (the dotted
line) imposed over that for meter fees (the solid line).

Consider first the case where the time restriction is much longer than the
time chosen by the off-street users: p,, < C'= 5.15. All drivers select the on-
street market. Marginally reducing the time restriction allows more drivers to
park on-street generating net rationing benefits. Furthermore, less drivers incur
the search cost d. Now consider C < p,,. < pgr . All drivers attempt to park
on-street. Reducing the time restriction marginally will generate a net rationing
loss (pgr > C), but this is initially more than compensated for by the gain in
welfare from reducing total search costs. An interior optimum exists at which
the two opposing effects offset one another, at price pj,.. At prices marginally
above this level, the loss of net rationing benefits outweighs the gain in reduced
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search costs. This continues until p,,. = pzr, = 12.65. At a price above this
level, some drivers switch directly to the y market thus saving the search cost.
There is an additional marginal benefit from raising prices. It so happens that
the net rationing loss from marginally raising prices is exactly offset by the
combined reduction in search costs. The marginal benefit of raising prices is
zero. Furthermore, this continues until p, = pzm = 13.39 at which point the
probability of getting an on-street spot is one. Raising on-street prices above
this level has no impact as all drivers park off-street.

This discussion relates to the base case in which on-street supply is 'relatively
small’. As shown in the proof of Lemma 1, however, the same result holds for
the case in which on-street supply is relatively large, although the shape of the
welfare function is slightly altered. The central result of this paper is collected
in Proposition 2.

Proposition 2 Given a competitive off-street market, social welfare is lower
in the case that government adopts an oplimal time restriction to regulale the
urban on-street parking than in the case with an optimal (linear) meter fee. Fur-
thermore, the net loss in welfare from adopting a time restriction is increasing
in the search cost parameler d.

Proof. See Appendix ®

This Proposition follows directly from Proposition 1 and Lemma 1. It is
also intuitive. The difference between the efficiency of the two instruments
stems from the impact on searching behaviour. If there are no search costs
(d = 0), the two instruments are identical (although trivially Np, > Niu,).
Table 2 reports some sensitivity analysis on the value of parameter d, which
illustrate the finding of the Proposition.

Table 2
J | Py | Pay | P | P W
d=15|m | 515 | 3.65 5.15 1 100
r | 5.56 | 12.88 | 13.39 | 0.230 | 96.36
d=2.0|m | 515 | 3.09 5.15 1 100
r | 5.70 | 12.65 | 13.39 | 0.233 | 95.16
d=25m | 515 | 2.54 5.15 1 100
r | 5.84 | 12.40 | 13.39 | 0.235 | 93.95

The table considers three scenarios for parameter d: a low value, d = 1.5,
the base case value, d = 2, and a high value, d = 2.5. This can be thought of
as sensitivity tests on the value of time whilst engaged in searching activities.
The performance of both instruments are considered under each scenario. First
notice that the welfare level W achieved under meter fees is independent of the
search cost parameter. This is obvious as there is no searching in the optimum.
However, under time restrictions, welfare declines as d increases.

Secondly, note that the optimal implicit price for the time restriction in-
creases in d. As search costs become more important, the marginal benefits
from increasing prices above C rise, whilst the marginal cost - the loss in net ra-
tioning benefits - stays constant. The optimal price increases; alternatively, the
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optimal time restriction is shorter the greater the distress caused from searching
behaviour. The optimal meter fee, by contrast, is independent of d. At that
price only the number of drivers will choose to attempt to park on-street such
that the probability of finding a spot is one. Search costs are not relevant.

Thirdly, note that under either instrument choice, p;; is declining in param-
eter d. For any given price on-street, the net gains from successfully finding an
on-street spot are offset ever more rapidly by the rising search costs if all drivers
choose left. The price at which only a subset of drivers can search is lower the
higher the search cost. In contrast, 7 is independent of the level of d for either
instrument. At this price, the net gain from being able to park on-street is zero
and sufficient drivers go left such that the probability of finding a spot is one.
This condition is not dependent on the search cost parameter.

Finally, note that in the optimum, the probability of finding a spot with
meter fees is one, whilst for time restrictions is around 0.23, although this is
slightly rising in the parameter d.

Expressions (11) and (5) restrict the size of on-street supply. Infact, the
basic result of the model holds under a more general restriction: 0 < Q,/N <
(e — C) /3. Consider first the case in which restriction (5) does not hold: on-
street supply is extremely small. At a zero price, the probability of finding a
spot is so low that not all drivers would choose to go left. The number of drivers
choosing left would fall from Nz; (0) < N to Ni,, (C) = Nim (C) in the case of
meter fees. The price pyy, does not exist. Under time restrictions, the demand
curve would bend-backwards: N, (p..) would initially be increasing in p,.
only to decrease beyond a certain point. The price pr might have two solutions
or none. Proposition 1 holds as meter fees can still reproduce the centralized
solution. However, the form of the optimal time restriction given in Lemma 1
would change, although the basic inferiority of time restrictions remains.

Finally, consider the case in which on-street supply fails to meet (11). On-
street supply is very large. Proposition 1 still holds. The optimal time restriction
given in Lemma 1, however, lies at a price for which the probability of finding
an on-street spot is one. Lemma 1 can no longer hold: N (p%,) > N, which is
not optimal. Instead it is optimal to raise the implicit price up until the price
at which Nz (p,) = N. Again, the form of the optimal time restriction given
in Lemma 1 alters, but the basic inferiority result remains.

6 Conclusion

In practice, time restrictions are a popular instrument for regulating urban on-
street parking. This paper has shown that, as long as the off-street market is
relatively competitive, time restrictions may induce too much wasteful search-
ing. Linear meter fees, in contrast, can solve the allocation problem efficiently.
The greater the search problem, the relatively better it becomes to adopt me-
ter fees rather than time restrictions. These results are collected together in
Propositions 1 and 2 of the paper.

Deriving strong policy prescriptions from such a simple model warrants a
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number of caveats. Firstly, the result only holds for a perfectly competitive off-
street market. Indeed, for the case of an off-street monopolist, the model can
be used to show that time restrictions can perform equally well as meter fees.
When off-street prices are high relative to resource cost, government can set
meter fees higher than level C'. At the margin, raising prices induce less drivers
to have to use the distorted off-street market and reduces total search costs.
However, the optimal meter fee will typically be at a level in which all drivers
choose left. Therefore both time restrictions and meter fees will be identical.

Secondly, the model assumes identical individuals. We think that in a more
complicated model, with consumer heterogeneity, a similar result will emerge:
the model result is driven by the difference in consumer surplus between a
quantity and price instrument.

Thirdly, as noted above, the random rationing rule ignores potentially impor-
tant margins of driver behaviour that can be used to influence the probability of
getting a spot. For instance, some drivers may arrive earlier, thus substituting
schedule delay costs for reduced expected search costs. Alternatively, drivers
may be able to engage in some costly activity to acquire greater information
on parking availability. As a result, the model is probably best suited to study
parking policies for urban areas concentrating on retail and leisure activities
(rather than non-retail employment centres).

Fourthly, we assume that on-street supply is sufficiently small that the third
case in section 3 is relevant rather than the second case. We argued above that
the third case is most relevant to large urban areas. Under the second case,
all peak period parking demand is efficiently allocated to the on-street market.
The off-street market is not used. An on-street time restriction or a meter fee
are equivalent as the probability of finding a spot is equal to one.

Fifthly, we have abstracted from issues to do with enforcement of on-street
parking. Enforcing any on-street price is costly: if no enforcement is used,
drivers will choose to park illegally. The expression for the optimal on-street
fee will reflect this cost. As noted by Elliot and Wright [7], the decision to
park illegally may slow down the parking warden, by requiring the writing of a
ticket. This lowers the probability of being caught for other drivers. This type
of externality may be important.

Finally, we ignore potential consequences from the fact that parking decisions
are the domain of urban governments. Incentives may exist to raise revenue
from non-voting drivers (such as long-distance commuters or tourists), or to
over-invest in enforcement to capture meter fee revenues rather than risk losing
fine revenues to the central government.

This suggests that an important research agenda remains in determining
better parking policies.

7 Appendix

This Appendix contains the proofs of the Propositions and Lemmas contained
in the paper.
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7.1 Proof of Proposition 1.

Begin with pym < Pgm, where pgm > 0 by the 'greater-than’ condition in (5).
The marginal benefit of raising the on-street price is given by the derivative of
[9], whilst noting that by definition Ny, = N and p, < 1:

. ((a = ©)* ~264)

" 2 (a _pzm)2

(12)

This marginal benefit function is strictly positive for 0 < pgm < pam if
Pzm < C. Deriving the explicit solution for pgn,, it is clear that pg, < C' if
Q./N < O‘;@C which is the case by assumption. It can be shown that the welfare
function is continuous at the point pgy,.

Consider the marginal increase in welfare of raising pyn when pzm < pem <
pzw = C. Using (9), substituting for Ny, = N}, this is given by the expres-
sion:

EW, =Qy >0

Finally, consider p,, > pzm. (note that the welfare function is discontinuous
at the point pz). It is clear that the marginal benefit of further increasing prices

is zero (EW% = 0). Given the discontinuous nature of the welfare function at

Dem = Pz, it remains to compare FWy, (pzm) with EW,,(pzm + €). Using
expression (9), it is direct to show that FW,,(pgm) > EW,,(pzm + ). Hence
the optimal level of on-street prices is given by p;,, = Pzm = C = p; All model
variables are identical to the centralized solution. QED.

7.2 Proof of Lemma 1.

This proof follows the structure of the proof of Proposition 1. By virtue
of the greater-than condition in expression (5), pgr > 0, and, further, it can be
shown that pg, > C if o > C' as assumed. Consider p, < pg-. Further, we begin

with the case that on-street capacity is relatively small (N7 (pg) < Np(per) =
N).

The marginal benefit of raising the implicit price (lowering the time restric-
tion) is given by equation (12). An interior local optimum exists at pg, =

a—/(a— 0)2 —20d if pyy < pgy. This follows from assumption (5)!3.
Now consider the marginal increase in welfare of raising p, when pg <

pe < psr. Taking the derivative of [10] gives that EW, = 0. The benefits
from reduced search costs (both via inducing less drivers to attempt to park

13 Although the greater-than condition on on-street supply is required to ensure Par < Por,
this can be relaxed. See discussion at end of section 5.
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on-street and by reducing the number of drivers that attempt but fail to find
a spot) exactly offset the loss in welfare from over-use of the on-street market.
The net marginal effect is zero. Finally, if p, > pzr, no drivers use the x
market. The impact of a marginal increase in the implicit price of parking is
therefore zero. Moreover, it can be shown that the social welfare function is
continuous. This implies that the globally optimal solution is given by p,. =
a—/(a—C)* =28d.
Consider the relatively large capacity of on-street supply: N7, (Par) > NL.(Par) =

N. On-street supply meets all on-street demand at price  : N (p) = N. For
price p, < P, the marginal welfare from raising prices is given by expression (12).
A local optimum exists if §,, < P, which substitution of terms reveals must hold

1
— 27
by virtue of condition Q]\T”” < ﬁao]@—%dﬁ from expression (11). Note that the

social welfare function is continuous at point p.
For p, > p, the marginal benefit of raising prices further is negative: % [N *

S5, = —NP: < (. The marginal benefit of raising prices above the point pzr
is clearly zero as for the small capacity case. The social welfare function can
also be shown to be continuous at that point. Hence the globally optimal price

is given by pi, = a — /(o — 0)2 — 206d. TFurther, this holds for the case of
relatively large and relatively small on-street capacity. QED.

7.3 Proof of Proposition 2.

First, we prove that social welfare is lower than that achieved with either an
optimal meter fee or a centralized solution. Substituting the optimal values for
pr., and pi into their respective social welfare functions reveals:

This is strictly positive if:

z d
SER

N -0 (14

But substitution of terms reveals:

o=

([a—C]2—26d) p
< ===
and hence (14) is satisfied by condition (11). Hence (13) > 0.
Second, we prove that the gain in welfare from using meter fees rather than
time restrictions is increasing in parameter d. The derivative of (13) with respect
to d is strictly positive once condition (11) is satisfied. QED.
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